574 research outputs found

    Air Force Institute of Technology Research Report 2019

    Get PDF
    This Research Report presents the FY19 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence

    Get PDF
    This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    In pursuit of autonomous distributed satellite systems

    Get PDF
    Satellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global

    A rule-based method for scalable and traceable evaluation of system architectures

    Get PDF
    Despite the development of a variety of decision-aid tools for assessing the value of a conceptual design, humans continue to play a dominant role in this process. Researchers have identified two major challenges to automation, namely the subjectivity of value and the existence of multiple and conflicting customer needs. A third challenge is however arising as the amount of data (e.g., expert judgment, requirements, and engineering models) required to assess value increases. This brings two challenges. First, it becomes harder to modify existing knowledge or add new knowledge into the knowledge base. Second, it becomes harder to trace the results provided by the tool back to the design variables and model parameters. Current tools lack the scalability and traceability required to tackle these knowledge-intensive design evaluation problems. This work proposes a traceable and scalable rule-based architecture evaluation tool called VASSAR that is especially tailored to tackle knowledge-intensive problems that can be formulated as configuration design problems, which is demonstrated using the conceptual design task for a laptop. The methodology has three main steps. First, facts containing the capabilities and performance of different architectures are computed using rules containing physical and logical models. Second, capabilities are compared with requirements to assess satisfaction of each requirement. Third, requirement satisfaction is aggregated to yield a manageable number of metrics. An explanation facility keeps track of the value chain all along this process. This paper describes the methodology in detail and discusses in particular different implementations of preference functions as logical rules. A full-scale example around the design of Earth observing satellites is presented

    Architectural Model for Evaluating Space Communication Networks

    Get PDF
    [ANGLÈS] The space exploration endeavor started in 1957 with the launch and operation of the first manmade satellite, the URSS Sputnik 1. Since then, multiple space programs have been developed, pushing the limits of technology and science but foremost unveiling the mysteries of the universe. In all these cases, the need for flexible and reliable communication systems has been primordial, allowing the return of collected science data and, when necessary, ensuring the well-being and safety of astronauts. To that end, multiple space communication networks have been globally deployed, be it through geographically distributed ground assets or through space relay satellites. Until now most of these systems have relied upon mature technology standards that have been adapted to the specific needs of particular missions and customers. Nevertheless, current trends in the space programs suggest that a shift of paradigm is needed: an Internet-like space network would increase the capacity and reliability of an interplanetary network while dramatically reducing its overall costs. In this context, the System Architecting Paradigm can be a good starting point. Through its formal decomposition of the system, it can help determine the architecturally distinguishing decisions and identify potential areas of commonality and cost reduction. This thesis presents a general framework to evaluate space communication relay systems for the near Earth domain. It indicates the sources of complexity in the modeling process, and discusses the validity and appropriateness of past approaches to the problem. In particular, it proposes a discussion of current models vis-à-vis the System Architecting Paradigm and how they fit into tradespace exploration studies. Next, the thesis introduces a computational performance model for the analysis and fast simulation of space relay satellite systems. The tool takes advantage of a specifically built-in rule-based expert system for storing the constitutive elements of the architecture and perform logical interactions between them. Analogously, it uses numerical models to assess the network topology over a given timeframe, perform physical layer computations and calculate plausible schedules for the overall system. In particular, it presents a newly developed heuristic scheduler that guarantees prioritization of specific missions and services while ensuring manageable computational times.[CASTELLÀ] El inicio de la carrera espacial se inició en 1957 con el lanzamiento y operación del primer satélite artificial, el Sputnik 1 de la URSS. Desde entonces se han desarrollado múltiples programas espaciales que han llevado al límite tanto la tecnología como la ciencia y han permitido desvelar los misterios del universo. En todos estos casos, la necesidad de sistemas de comunicación flexibles y fiables ha sido primordial con el fin de asegurar el retorno de los datos científicos recopilados y, en ciertos casos, garantizar la seguridad de los astronautas. Como consecuencia, múltiples redes de comunicaciones espaciales han sido desplegadas, ya sea a través de antenas globalmente distribuidas a través de la superficie terrestre o mediante satélites repetidores. Hasta ahora la mayoría de estos sistemas se ha basado en estándares tecnológicos maduros y testeados, los cuales se han adaptado con el fin de satisfacer las necesidades específicas de cada misión y cliente. Sin embargo, las tendencias actuales en el diseño de los nuevos programas espaciales indica que un cambio de paradigma es necesario: una red espacial a imagen de Internet permitiría incrementar la capacidad y fiabilidad de las comunicaciones interplanetarias y, a la vez, reducir dramáticamente sus costes. En este contexto, el paradigma de arquitectura de sistemas puede ser un buen punto de partida. Mediante la descomposición formal del sistema, puede ayudar a determinar las decisiones que tienen un impacto cabal en el diseño de la arquitectura así como identificar las áreas con tecnologías similares y de menor coste. Esta tesis presenta un marco teórico general para evaluar sistemas de comunicaciones espaciales para misiones que orbitan la Tierra. Adicionalmente, la tesis indica los principales orígenes de complejidad durante el modelado del sistema y presenta una discusión sobre la validez de anteriores estrategias para analizar el problema. En concreto, propone una comparación de anteriores modelos respecto el paradigma de arquitectura de sistemas y su grado de adecuación para evaluar y comprar arquitecturas. A continuación, la tesis introduce un modelo computacional para simular y evaluar el rendimiento de sistemas de repetidores por satélite. La herramienta utiliza un rule-based expert system específicamente diseñado con el fin de almacenar los principales elementos constitutivos de la arquitectura y comprender las interacciones lógicas entre ellos. Análogamente, el modelo usa métodos numéricos con el fin de calcular la evolución temporal de la topología de la red en un determinado intervalo de tiempo, así como su capa física y un posible programa de contactos. En concreto, presenta un nuevo scheduler heurístico que garantiza la correcta ordenación de las misiones y servicios a la vez que asegura un tiempo computacional aceptable.[CATALÀ] L'inici de la cursa espacial va iniciar-se l'any 1957 amb el llançament i operació del primer satèl·lit artificial, l'Sputnik 1 de la URSS. Des d'aleshores s'han dut a terme múltiples programes espacials que han portat al límit tant la tecnologia com la ciència i han permès desvelar els misteris de l'univers. En tots aquests casos, la necessitat de sistemes de comunicació flexibles i fiables ha sigut primordial per tal d'assegurar el retorn de les dades científiques recopilades i, en certs casos, garantir el benestar i seguretat dels astronautes. Com a conseqüència, múltiples xarxes de comunicacions espacials han sigut desplegades, ja sigui a través d'antenes globalment distribuïdes a través de la superfície terrestre o mitjançant satèl·lits repetidors. Fins ara la majoria d'aquests sistemes s'han basat en estàndards tecnològics madurs i testats, els quals s'han adaptat per tal de satisfer les necessitats específiques de cada missió i client. Això no obstant, les tendències actuals en el disseny dels nous programes espacials indica que un canvi de paradigma és necessari: una xarxa espacial a imatge d'Internet permetria incrementar la capacitat i fiabilitat de les comunicacions interplanetàries i, alhora, reduir dramàticament els seu costs. En aquest context, el paradigma d'arquitectura de sistemes pot ser un bon punt de partida. Mitjançant la descomposició formal del sistema, pot ajudar a determinar les decisions que tenen un impacte cabdal en el disseny de l'arquitectura així com permetre identificar àrees amb tecnologies similars i de menor cost. Aquesta tesi presenta un marc teòric general per avaluar sistemes de comunicacions espacials per missions orbitant la Terra. Addicionalment, la tesi indica els principals orígens de complexitat durant el modelatge del sistema i presenta una discussió sobre la validesa d'anteriors estratègies per analitzar el problema. En concret, proposa una comparació d'anteriors models respecte el paradigma d'arquitectura de sistemes i el seu grau d'adequació per avaluar i comparar arquitectures. A continuació, la tesi introdueix un model computacional per simular i avaluar el rendiment de sistemes de repetidors per satèl·lit. L'eina empra un rule-based expert system específicament dissenyat per tal d'emmagatzemar els principals elements constitutius de l'arquitectura i comprendre les interaccions lògiques entre ells. Anàlogament, el model utilitza mètodes numèrics per tal de calcular l'evolució temporal de la topologia de la xarxa en un determinat interval de temps, així com calcular la seva capa física i un possible programa de contactes. En concret, presenta un nou scheduler heurístic que garanteix la correcte ordenació de les missions i serveis tot assegurant un temps de computació acceptable

    In pursuit of autonomous distributed satellite systems

    Get PDF
    A la pàgina 265 diu: "In an effort to facilitate the reproduction of results, both the source code of the simulation environment and the configuration files that were prepared for the design characterisation are available in an open repository: https://github.com/carlesaraguz/aeossSatellite imagery has become an essential resource for environmental, humanitarian, and industrial endeavours. As a means to satisfy the requirements of new applications and user needs, novel Earth Observation (EO) systems are exploring the suitability of Distributed Satellite Systems (DSS) in which multiple observation assets concurrently sense the Earth. Given the temporal and spatial resolution requirements of EO products, DSS are often envisioned as large-scale systems with multiple sensing capabilities operating in a networked manner. Enabled by the consolidation of small satellite platforms and fostered by the emerging capabilities of distributed systems, these new architectures pose multiple design and operational challenges. Two of them are the main pillars of this research, namely, the conception of decision-support tools to assist the architecting process of a DSS, and the design of autonomous operational frameworks based on decentralised, on-board decision-making. The first part of this dissertation addresses the architecting of heterogeneous, networked DSS architectures that hybridise small satellite platforms with traditional EO assets. We present a generic design-oriented optimisation framework based on tradespace exploration methodologies. The goals of this framework are twofold: to select the most optimal constellation design; and to facilitate the identification of design trends, unfeasible regions, and tensions among architectural attributes. Oftentimes in EO DSS, system requirements and stakeholder preferences are not only articulated through functional attributes (i.e. resolution, revisit time, etc.) or monetary constraints, but also through qualitative traits such as flexibility, evolvability, robustness, or resiliency, amongst others. In line with that, the architecting framework defines a single figure of merit that aggregates quantitative attributes and qualitative ones-the so-called ilities of a system. With that, designers can steer the design of DSS both in terms of performance or cost, and in terms of their high-level characteristics. The application of this optimisation framework has been illustrated in two timely use-cases identified in the context of the EU-funded ONION project: a system that measures ocean and ice parameters in Polar regions to facilitate weather forecast and off-shore operations; and a system that provides agricultural variables crucial for global management of water stress, crop state, and draughts. The analysis of architectural features facilitated a comprehensive understanding of the functional and operational characteristics of DSS. With that, this thesis continues to delve into the design of DSS by focusing on one particular functional trait: autonomy. The minimisation of human-operator intervention has been traditionally sought in other space systems and can be especially critical for large-scale, structurally dynamic, heterogeneous DSS. In DSS, autonomy is expected to cope with the likely inability to operate very large-scale systems in a centralised manner, to improve the science return, and to leverage many of their emerging capabilities (e.g. tolerance to failures, adaptability to changing structures and user needs, responsiveness). We propose an autonomous operational framework that provides decentralised decision-making capabilities to DSS by means of local reasoning and individual resource allocation, and satellite-to-satellite interactions. In contrast to previous works, the autonomous decision-making framework is evaluated in this dissertation for generic constellation designs the goal of which is to minimise global revisit times. As part of the characterisation of our solution, we stressed the implications that autonomous operations can have upon satellite platforms with stringent resource constraints (e.g. power, memory, communications capabilities) and evaluated the behaviour of the solution for a large-scale DSS composed of 117 CubeSat-like satellite units.La imatgeria per satèl·lit ha esdevingut un recurs essencial per assolir tasques ambientals, humanitàries o industrials. Per tal de satisfer els requeriments de les noves aplicacions i usuaris, els sistemes d’observació de la Terra (OT) estan explorant la idoneïtat dels Sistemes de Satèl·lit Distribuïts (SSD), on múltiples observatoris espacials mesuren el planeta simultàniament. Degut al les resolucions temporals i espacials requerides, els SSD sovint es conceben com sistemes de gran escala que operen en xarxa. Aquestes noves arquitectures promouen les capacitats emergents dels sistemes distribuïts i, tot i que són possibles gràcies a l’acceptació de les plataformes de satèl·lits petits, encara presenten molts reptes en quant al disseny i operacions. Dos d’ells són els pilars principals d’aquesta tesi, en concret, la concepció d’eines de suport a la presa de decisions pel disseny de SSD, i la definició d’operacions autònomes basades en gestió descentralitzada a bord dels satèl·lits. La primera part d’aquesta dissertació es centra en el disseny arquitectural de SSD heterogenis i en xarxa, imbricant tecnologies de petits satèl·lits amb actius tradicionals. Es presenta un entorn d’optimització orientat al disseny basat en metodologies d’exploració i comparació de solucions. Els objectius d’aquest entorn són: la selecció el disseny de constel·lació més òptim; i facilitar la identificació de tendències de disseny, regions d’incompatibilitat, i tensions entre atributs arquitecturals. Sovint en els SSD d’OT, els requeriments del sistema i l’expressió de prioritats no només s’articulen en quant als atributs funcionals o les restriccions monetàries, sinó també a través de les característiques qualitatives com la flexibilitat, l’evolucionabilitat, la robustesa, o la resiliència, entre d’altres. En línia amb això, l’entorn d’optimització defineix una única figura de mèrit que agrega rendiment, cost i atributs qualitatius. Així l’equip de disseny pot influir en les solucions del procés d’optimització tant en els aspectes quantitatius, com en les característiques dalt nivell. L’aplicació d’aquest entorn d’optimització s’il·lustra en dos casos d’ús actuals identificats en context del projecte europeu ONION: un sistema que mesura paràmetres de l’oceà i gel als pols per millorar la predicció meteorològica i les operacions marines; i un sistema que obté mesures agronòmiques vitals per la gestió global de l’aigua, l’estimació d’estat dels cultius, i la gestió de sequeres. L’anàlisi de propietats arquitecturals ha permès copsar de manera exhaustiva les característiques funcionals i operacionals d’aquests sistemes. Amb això, la tesi ha seguit aprofundint en el disseny de SSD centrant-se, particularment, en un tret funcional: l’autonomia. Minimitzar la intervenció de l’operador humà és comú en altres sistemes espacials i podria ser especialment crític pels SSD de gran escala, d’estructura dinàmica i heterogenis. En els SSD s’espera que l’autonomia solucioni la possible incapacitat d’operar sistemes de gran escala de forma centralitzada, que millori el retorn científic i que n’apuntali les seves propietats emergents (e.g. tolerància a errors, adaptabilitat a canvis estructural i de necessitats d’usuari, capacitat de resposta). Es proposa un sistema d’operacions autònomes que atorga la capacitat de gestionar els sistemes de forma descentralitzada, a través del raonament local, l’assignació individual de recursos, i les interaccions satèl·lit-a-satèl·lit. Al contrari que treballs anteriors, la presa de decisions autònoma s’avalua per constel·lacions que tenen com a objectius de missió la minimització del temps de revisita global.Postprint (published version

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures
    corecore