3,395 research outputs found

    Isotactics as a foundation for alignment and abstraction of behavioral models

    Get PDF
    There are many use cases in business process management that require the comparison of behavioral models. For instance, verifying equivalence is the basis for assessing whether a technical workflow correctly implements a business process, or whether a process realization conforms to a reference process. This paper proposes an equivalence relation for models that describe behaviors based on the concurrency semantics of net theory and for which an alignment relation has been defined. This equivalence, called isotactics, preserves the level of concurrency of aligned operations. Furthermore, we elaborate on the conditions under which an alignment relation can be classified as an abstraction. Finally, we show that alignment relations induced by structural refinements of behavioral models are indeed behavioral abstractions

    Abstracting Asynchronous Multi-Valued Networks: An Initial Investigation

    Get PDF
    Multi-valued networks provide a simple yet expressive qualitative state based modelling approach for biological systems. In this paper we develop an abstraction theory for asynchronous multi-valued network models that allows the state space of a model to be reduced while preserving key properties of the model. The abstraction theory therefore provides a mechanism for coping with the state space explosion problem and supports the analysis and comparison of multi-valued networks. We take as our starting point the abstraction theory for synchronous multi-valued networks which is based on the finite set of traces that represent the behaviour of such a model. The problem with extending this approach to the asynchronous case is that we can now have an infinite set of traces associated with a model making a simple trace inclusion test infeasible. To address this we develop a decision procedure for checking asynchronous abstractions based on using the finite state graph of an asynchronous multi-valued network to reason about its trace semantics. We illustrate the abstraction techniques developed by considering a detailed case study based on a multi-valued network model of the regulation of tryptophan biosynthesis in Escherichia coli.Comment: Presented at MeCBIC 201

    A Forward Reachability Algorithm for Bounded Timed-Arc Petri Nets

    Full text link
    Timed-arc Petri nets (TAPN) are a well-known time extension of the Petri net model and several translations to networks of timed automata have been proposed for this model. We present a direct, DBM-based algorithm for forward reachability analysis of bounded TAPNs extended with transport arcs, inhibitor arcs and age invariants. We also give a complete proof of its correctness, including reduction techniques based on symmetries and extrapolation. Finally, we augment the algorithm with a novel state-space reduction technique introducing a monotonic ordering on markings and prove its soundness even in the presence of monotonicity-breaking features like age invariants and inhibitor arcs. We implement the algorithm within the model-checker TAPAAL and the experimental results document an encouraging performance compared to verification approaches that translate TAPN models to UPPAAL timed automata.Comment: In Proceedings SSV 2012, arXiv:1211.587

    When are Stochastic Transition Systems Tameable?

    Full text link
    A decade ago, Abdulla, Ben Henda and Mayr introduced the elegant concept of decisiveness for denumerable Markov chains [1]. Roughly speaking, decisiveness allows one to lift most good properties from finite Markov chains to denumerable ones, and therefore to adapt existing verification algorithms to infinite-state models. Decisive Markov chains however do not encompass stochastic real-time systems, and general stochastic transition systems (STSs for short) are needed. In this article, we provide a framework to perform both the qualitative and the quantitative analysis of STSs. First, we define various notions of decisiveness (inherited from [1]), notions of fairness and of attractors for STSs, and make explicit the relationships between them. Then, we define a notion of abstraction, together with natural concepts of soundness and completeness, and we give general transfer properties, which will be central to several verification algorithms on STSs. We further design a generic construction which will be useful for the analysis of {\omega}-regular properties, when a finite attractor exists, either in the system (if it is denumerable), or in a sound denumerable abstraction of the system. We next provide algorithms for qualitative model-checking, and generic approximation procedures for quantitative model-checking. Finally, we instantiate our framework with stochastic timed automata (STA), generalized semi-Markov processes (GSMPs) and stochastic time Petri nets (STPNs), three models combining dense-time and probabilities. This allows us to derive decidability and approximability results for the verification of these models. Some of these results were known from the literature, but our generic approach permits to view them in a unified framework, and to obtain them with less effort. We also derive interesting new approximability results for STA, GSMPs and STPNs.Comment: 77 page

    Testing real-time systems using TINA

    Get PDF
    The paper presents a technique for model-based black-box conformance testing of real-time systems using the Time Petri Net Analyzer TINA. Such test suites are derived from a prioritized time Petri net composed of two concurrent sub-nets specifying respectively the expected behaviour of the system under test and its environment.We describe how the toolbox TINA has been extended to support automatic generation of time-optimal test suites. The result is optimal in the sense that the set of test cases in the test suite have the shortest possible accumulated time to be executed. Input/output conformance serves as the notion of implementation correctness, essentially timed trace inclusion taking environment assumptions into account. Test cases selection is based either on using manually formulated test purposes or automatically from various coverage criteria specifying structural criteria of the model to be fulfilled by the test suite. We discuss how test purposes and coverage criterion are specified in the linear temporal logic SE-LTL, derive test sequences, and assign verdicts

    StocHy: automated verification and synthesis of stochastic processes

    Full text link
    StocHy is a software tool for the quantitative analysis of discrete-time stochastic hybrid systems (SHS). StocHy accepts a high-level description of stochastic models and constructs an equivalent SHS model. The tool allows to (i) simulate the SHS evolution over a given time horizon; and to automatically construct formal abstractions of the SHS. Abstractions are then employed for (ii) formal verification or (iii) control (policy, strategy) synthesis. StocHy allows for modular modelling, and has separate simulation, verification and synthesis engines, which are implemented as independent libraries. This allows for libraries to be easily used and for extensions to be easily built. The tool is implemented in C++ and employs manipulations based on vector calculus, the use of sparse matrices, the symbolic construction of probabilistic kernels, and multi-threading. Experiments show StocHy's markedly improved performance when compared to existing abstraction-based approaches: in particular, StocHy beats state-of-the-art tools in terms of precision (abstraction error) and computational effort, and finally attains scalability to large-sized models (12 continuous dimensions). StocHy is available at www.gitlab.com/natchi92/StocHy

    A Polynomial Translation of pi-calculus FCPs to Safe Petri Nets

    Full text link
    We develop a polynomial translation from finite control pi-calculus processes to safe low-level Petri nets. To our knowledge, this is the first such translation. It is natural in that there is a close correspondence between the control flows, enjoys a bisimulation result, and is suitable for practical model checking.Comment: To appear in special issue on best papers of CONCUR'12 of Logical Methods in Computer Scienc
    • …
    corecore