32,177 research outputs found

    Heterogeneous component interactions: Sensors integration into multimedia applications

    Full text link
    Resource-constrained embedded and mobile devices are becoming increasingly common. Since few years, some mobile and ubiquitous devices such as wireless sensor, able to be aware of their physical environment, appeared. Such devices enable proposing applications which adapt to user's need according the context evolution. It implies the collaboration of sensors and software components which differ on their nature and their communication mechanisms. This paper proposes a unified component model in order to easily design applications based on software components and sensors without taking care of their nature. Then it presents a state of the art of communication problems linked to heterogeneous components and proposes an interaction mechanism which ensures information exchanges between wireless sensors and software components

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Wireless model-based predictive networked control system over cooperative wireless network

    Get PDF
    Owing to their distributed architecture, networked control systems (NCSs) are proven to be feasible in scenarios where a spatially distributed feedback control system is required. Traditionally, such NCSs operate over real-time wired networks. Recently, in order to achieve the utmost flexibility, scalability, ease of deployment, and maintainability, wireless networks such as IEEE 802.11 wireless local area networks (LANs) are being preferred over dedicated wired networks. However, conventional NCSs with event-triggered controllers and actuators cannot operate over such general purpose wireless networks since the stability of the system is compromised due to unbounded delays and unpredictable packet losses that are typical in the wireless medium. Approaching the wireless networked control problem from two perspectives, this work introduces a practical wireless NCS and an implementation of a cooperative medium access control protocol that work jointly to achieve decent control under severe impairments, such as unbounded delay, bursts of packet loss and ambient wireless traffic. The proposed system is evaluated on a dedicated test platform under numerous scenarios and significant performance gains are observed, making cooperative communications a strong candidate for improving the reliability of industrial wireless networks

    Experiences and issues for environmental engineering sensor network deployments

    Get PDF
    Sensor network research is a large and growing area of academic effort, examining technological and deployment issues in the area of environmental monitoring. These technologies are used by environmental engineers and scientists to monitor a multiplicity of environments and services, and, specific to this paper, energy and water supplied to the built environment. Although the technology is developed by Computer Science specialists, the use and deployment is traditionally performed by environmental engineers. This paper examines deployment from the perspectives of environmental engineers and scientists and asks what computer scientists can do to improve the process. The paper uses a case study to demonstrate the agile operation of WSNs within the Cloud Computing infrastructure, and thus the demand-driven, collaboration-intense paradigm of Digital Ecosystems in Complex Environments
    corecore