1,296 research outputs found

    Machine Learning assisted Digital Twin for event identification in electrical power system

    Get PDF
    The challenges of stable operation in the electrical power system are increasing with the infrastructure shifting of the power grid from the centralized energy supply with fossil fuels towards sustainable energy generation. The predominantly RES plants, due to the non-linear electronic switch, have brought harmonic oscillations into the power grid. These changes lead to difficulties in stable operation, reduction of outages and management of variations in electric power systems. The emergence of the Digital Twin in the power system brings the opportunity to overcome these challenges. Digital Twin is a digital information model that accurately represents the state of every asset in a physical system. It can be used not only to monitor the operation states with actionable insights of physical components to drive optimized operation but also to generate abundant data by simulation according to the guidance on design limits of physical systems. The work addresses the topic of the origin of the Digital Twin concept and how it can be utilized in the optimization of power grid operation.Die Herausforderungen für den zuverfässigen Betrieb des elektrischen Energiesystems werden mit der Umwandlung der Infrastruktur in Stromnetz von der zentralen Energieversorgung mit fossilen Brennstoffen hin zu der regenerativen Energieeinspeisung stetig zugenommen. Der Ausbau der erneuerbaren Energien im Zuge der klimapolitischen Zielsetzung zur CO²-Reduzierung und des Ausstiegs aus der Kernenergie wird in Deutschland zügig vorangetrieben. Aufgrund der nichtlinearen elektronischen Schaltanlagen werden die aus EE-Anlagen hervorgegangenen Oberschwingungen in das Stromnetz eingebracht, was nicht nur die Komplexität des Stromnetzes erhöht, sondern auch die Stabilität des Systems beeinflusst. Diese Entwicklungen erschweren den stabilen Betrieb, die Verringerung der Ausfälle und das Management der Netzschwankungen im elektrischen Energiesystem. Das Auftauchen von Digital Twin bringt die Gelegenheit zur Behebung dieser Herausforderung. Digital Twin ist ein digitales Informationsmodell, das den Zustand des physikalischen genau abbildet. Es kann nicht nur zur Überwachung der Betriebszustände mit nachvollziehbarem Einsichten über physischen Komponenten sondern auch zur Generierung der Daten durch Simulationen unter der Berücksichtigung der Auslegungsgrenze verwendet werden. Diesbezüglich widmet sich die Arbeit zunächste der Fragestellung, woher das Digital Twin Konzept stammt und wie das Digitan Twin für die Optimierung des Stromnetzes eingesetzt wird. Hierfür werden die Perspektiven über die dynamische Zustandsschätzung, die Überwachung des des Betriebszustands, die Erkennung der Anomalien usw. im Stromnetz mit Digital Twin spezifiziert. Dementsprechend wird die Umsetzung dieser Applikationen auf dem Lebenszyklus-Management basiert. Im Rahmen des Lebenszyklusschemas von Digital Twin sind drei wesentliche Verfahren von der Modellierung des Digital Twins zur deren Applizierung erforderlich: Parametrierungsprozess für die Modellierung des Digital Twins, Datengenerierung mit Digital Twin Simulation und Anwendung mit Machine Learning Algorithmus für die Erkennung der Anomalie. Die Validierung der Zuverlässigkeit der Parametrierung für Digital Twin und der Eventserkennung erfolgt mittels numerischer Fallstudien. Dazu werden die Algorithmen für Online und Offline zur Parametrierung des Digital Twins untersucht. Im Rahmen dieser Arbeit wird das auf CIGRÉ basierende Referenznetz zur Abbildung des Digital Twin hinsichtlich der Referenzmessdaten parametriert. So sind neben der Synchronmaschine und Umrichter basierende Einspeisung sowie Erreger und Turbine auch regler von Umrichter für den Parametrierungsprozess berücksichtigt. Nach der Validierung des Digital Twins werden die zahlreichen Simulationen zur Datengenerierung durchgeführt. Jedes Event wird mittels der Daten vo Digital Twin mit einem "Fingerprint" erfasst. Das Training des Machine Learning Algorithmus wird dazu mit den simulierten Daten von Digital Twin abgewickelt. Das Erkennungsergebnis wird durch die Fallstudien validiert und bewertet

    Machine learning for optical fiber communication systems: An introduction and overview

    Get PDF
    Optical networks generate a vast amount of diagnostic, control and performance monitoring data. When information is extracted from this data, reconfigurable network elements and reconfigurable transceivers allow the network to adapt both to changes in the physical infrastructure but also changing traffic conditions. Machine learning is emerging as a disruptive technology for extracting useful information from this raw data to enable enhanced planning, monitoring and dynamic control. We provide a survey of the recent literature and highlight numerous promising avenues for machine learning applied to optical networks, including explainable machine learning, digital twins and approaches in which we embed our knowledge into the machine learning such as physics-informed machine learning for the physical layer and graph-based machine learning for the networking layer

    Lyapunov-based Control Design For Uncertain Mimo Systems

    Get PDF
    In this dissertation. we document the progress in the control design for a class of MIMO nonlinear uncertain system from five papers. In the first part, we address the problem of adaptive control design for a class of multi-input multi-output (MIMO) nonlinear systems. A Lypaunov based singularity free control law, which compensates for parametric uncertainty in both the drift vector and the input gain matrix, is proposed under the mild assumption that the signs of the leading minors of the control input gain matrix are known. Lyapunov analysis shows global uniform ultimate boundedness (GUUB) result for the tracking error under full state feedback (FSFB). Under the restriction that only the output vector is available for measurement, an output feedback (OFB) controller is designed based on a standard high gain observer (HGO) stability under OFB is fostered by the uniformity of the FSFB solution. Simulation results for both FSFB and OFB controllers demonstrate the efcacy of the MIMO control design in the classical 2-DOF robot manipulator model. In the second part, an adaptive feedback control is designed for a class of MIMO nonlinear systems containing parametric uncertainty in both the drift vector and the input gain matrix, which is assumed to be full-rank and non-symmetric in general. Based on an SDU decomposition of the gain matrix, a singularity-free adaptive tracking control law is proposed that is shown to be globally asymptotically stable (GAS) under full-state feedback. iii Output feedback results are facilitated via the use of a high-gain observer (HGO). Under output feedback control, ultimate boundedness of the error signals is obtained the size of the bound is related to the size of the uncertainty in the parameters. An explicit upper bound is also provided on the size of the HGO gain constant. In third part, a class of aeroelastic systems with an unmodeled nonlinearity and external disturbance is considered. By using leading- and trailing-edge control surface actuations, a full-state feedforward/feedback controller is designed to suppress the aeroelastic vibrations of a nonlinear wing section subject to external disturbance. The full-state feedback control yields a uniformly ultimately bounded result for two-axis vibration suppression. With the restriction that only pitching and plunging displacements are measurable while their rates are not, a high-gain observer is used to modify the full-state feedback control design to an output feedback design. Simulation results demonstrate the ef cacy of the multi-input multioutput control toward suppressing aeroelastic vibration and limit cycle oscillations occurring in pre and post utter velocity regimes when the system is subjected to a variety of external disturbance signals. Comparisons are drawn with a previously designed adaptive multi-input multi-output controller. In the fourth part, a continuous robust feedback control is designed for a class of high-order multi-input multi-output (MIMO) nonlinear systems with two degrees of freedom containing unstructured nonlinear uncertainties in the drift vector and parametric uncertainties in the high frequency gain matrix, which is allowed to be non-symmetric in general. Given some mild assumptions on the system model, a singularity-free continuous robust tracking coniv trol law is designed that is shown to be semi-globally asymptotically stable under full-state feedback through a Lyapunov stability analysis. The performance of the proposed algorithm have been verified on a two-link robot manipulator model and 2-DOF aeroelastic model

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    JOINING SEQUENCE ANALYSIS AND OPTIMIZATION FOR IMPROVED GEOMETRICAL QUALITY

    Get PDF
    Disturbances in the manufacturing and assembly processes cause geometrical variation from the ideal geometry. This variation eventually results in functional and aesthetic problems in the final product. Being able to control the disturbances is the desire of the manufacturing industry. \ua0 Joining sequences impact the final geometrical outcome in an assembly considerably. To optimize the sequence for improved geometrical outcome is both experimentally and computationally expensive. In the simulation-based approaches, based on the finite element method, a large number of sequences need to be evaluated.\ua0 In this thesis, the simulation-based joining sequence optimization using non-rigid variation simulation is studied. Initially, the limitation of the applied algorithms in the literature has been addressed. A rule-based optimization approach based on meta-heuristic algorithms and heuristic search methods is introduced to increase the previously applied algorithms\u27 time-efficiency and accuracy. Based on the identified rules and heuristics, a reduced formulation of the sequence optimization is introduced by identifying the critical points for geometrical quality. A subset of the sequence problem is identified and solved in this formulation.\ua0 For real-time optimization of the joining sequence problem, time-efficiency needs to be further enhanced by parallel computations. By identifying the sequence-deformation behavior in the assemblies, black-box surrogate models are introduced, enabling parallel evaluations and accurate approximation of the geometrical quality. Based on this finding, a deterministic stepwise search algorithm for rapid identification of the optimal sequence is introduced.\ua0 Furthermore, a numerical approach to identify the number, location from a set of alternatives, and sequence of the critical joining points for geometrical quality is introduced. Finally, the cause of the various deformations achieved by joining sequences is identified. A time-efficient non-rigid variation simulation approach for evaluating the geometrical quality with respect to the sequences is proposed. \ua0 The results achieved from the studies presented indicate that the simulation-based real-time optimization of the joining sequences is achievable through a parallelized search algorithm and a rapid evaluation of the sequences. The critical joining points for geometrical quality are identified while the sequence is optimized. The results help control the assembly process with respect to the joining operation, improve the geometrical quality, and save significant computational time

    Aeronautical Engineering: A continuing bibliography, supplement 96

    Get PDF
    This bibliography lists 448 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1978

    From model-driven to data-driven : a review of hysteresis modeling in structural and mechanical systems

    Get PDF
    Hysteresis is a natural phenomenon that widely exists in structural and mechanical systems. The characteristics of structural hysteretic behaviors are complicated. Therefore, numerous methods have been developed to describe hysteresis. In this paper, a review of the available hysteretic modeling methods is carried out. Such methods are divided into: a) model-driven and b) datadriven methods. The model-driven method uses parameter identification to determine parameters. Three types of parametric models are introduced including polynomial models, differential based models, and operator based models. Four algorithms as least mean square error algorithm, Kalman filter algorithm, metaheuristic algorithms, and Bayesian estimation are presented to realize parameter identification. The data-driven method utilizes universal mathematical models to describe hysteretic behavior. Regression model, artificial neural network, least square support vector machine, and deep learning are introduced in turn as the classical data-driven methods. Model-data driven hybrid methods are also discussed to make up for the shortcomings of the two methods. Based on a multi-dimensional evaluation, the existing problems and open challenges of different hysteresis modeling methods are discussed. Some possible research directions about hysteresis description are given in the final section

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Pushing the Boundaries of Spacecraft Autonomy and Resilience with a Custom Software Framework and Onboard Digital Twin

    Get PDF
    This research addresses the high CubeSat mission failure rates caused by inadequate software and overreliance on ground control. By applying a reliable design methodology to flight software development and developing an onboard digital twin platform with fault prediction capabilities, this study provides a solution to increase satellite resilience and autonomy, thus reducing the risk of mission failure. These findings have implications for spacecraft of all sizes, paving the way for more resilient space missions

    Hedonic Wage Equilibrium: Theory, Evidence and Policy

    Get PDF
    We examine theoretically and empirically the properties of the equilibrium wage function and its implications for policy. Our emphasis is on how the researcher approaches economic and policy questions when there is labor market heterogeneity leading to a set of wages. We focus on the application where hedonic models have been most successful at clarifying policy relevant outcomes and policy effects, that of the wage premia for fatal injury risk. Estimates of the overall hedonic locus we discuss imply the so-called value of a statistical life (VSL) that is useful as the benefit value in a cost-effectiveness calculation of government programs to enhance personal safety. Additional econometric results described are the multiple dimensions of heterogeneity in VSL, including by age and consumption plans, the latent trait that affects wages and job safety setting choice, and family income. Simulations of hedonic market outcomes are also valuable research tools. To demonstrate the additional usefulness of giving detail to the underlying structure we not only develop the issue of welfare comparisons theoretically but also illustrate how numerical simulations of the underlying structure can also be informative. Using a reasonable set of primitives we see that job safety regulations are much more limited in their potential for improving workplace safety efficiently compared to mandatory injury insurance with experience rated premiums. The simulations reveal how regulations incent some workers to take more dangerous jobs, while workers’ compensation insurance does not (or less so).hedonic labor market equilibrium, VSL, panel data, job safety, OSHA, quantile regression, workers’ compensation insurance
    • …
    corecore