174 research outputs found

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Global exponential synchronization of quaternion-valued memristive neural networks with time delays

    Get PDF
    This paper extends the memristive neural networks (MNNs) to quaternion field, a new class of neural networks named quaternion-valued memristive neural networks (QVMNNs) is then established, and the problem of drive-response global synchronization of this type of networks is investigated in this paper. Two cases are taken into consideration: one is with the conventional differential inclusion assumption, the other without. Criteria for the global synchronization of these two cases are achieved respectively by appropriately choosing the Lyapunov functional and applying some inequality techniques. Finally, corresponding simulation examples are presented to demonstrate the correctness of the proposed results derived in this paper

    Novel fixed-time stabilization of quaternion-valued BAMNNs with disturbances and time-varying coefficients

    Get PDF
    In this paper, with the quaternion number and time-varying coefficients introduced into traditional BAMNNs, the model of quaternion-valued BAMNNs are formulated. For the first time, fixed-time stabilization of time-varying quaternion-valued BAMNNs is investigated. A novel fixed-time control method is adopted, in which the choice of the Lyapunov function is more general than in most previous results. To cope with the noncommutativity of the quaternion multiplication, two different fixed-time control methods are provided, a decomposition method and a non-decomposition method. Furthermore, to reduce the control strength and improve control efficiency, an adaptive fixed-time control strategy is proposed. Lastly, numerical examples are presented to demonstrate the effectiveness of the theoretical results. © 2020 the Author(s), licensee AIMS Press

    Finite-time adaptive synchronization of fractional-order delayed quaternion-valued fuzzy neural networks

    Get PDF
    Based on direct quaternion method, this paper explores the finite-time adaptive synchronization (FAS) of fractional-order delayed quaternion-valued fuzzy neural networks (FODQVFNNs). Firstly, a useful fractional differential inequality is created, which offers an effective way to investigate FAS. Then two novel quaternion-valued adaptive control strategies are designed. By means of our newly proposed inequality, the basic knowledge about fractional calculus, reduction to absurdity as well as several inequality techniques of quaternion and fuzzy logic, several sufficient FAS criteria are derived for FODQVFNNs. Moreover, the settling time of FAS is estimated, which is in connection with the order and initial values of considered systems as well as the controller parameters. Ultimately, the validity of obtained FAS criteria is corroborated by numerical simulations

    Finite-time projective synchronization of fractional-order delayed quaternion-valued fuzzy memristive neural networks

    Get PDF
    In this paper, the finite-time projective synchronization (FTPS) problem of fractionalorder quaternion-valued fuzzy memristor neural networks (FOQVFMNNs) is studied. Through establishing a feedback controller with signed functions and an adaptive controller, sufficient conditions for FTPS for FOQVFMNNs are obtained. Furthermore, the synchronization establishment time is calculated. Finally, the practicability of the conclusions is verified by numerical simulations

    Exponential Stability Analysis of Mixed Delayed Quaternion-Valued Neural Networks Via Decomposed Approach

    Full text link
    © 2013 IEEE. With the application of quaternion in technology, quaternion-valued neural networks (QVNNs) have attracted many scholars' attention in recent years. For the existing results, dynamical behavior is an important studying side. In this paper, we mainly research the existence, uniqueness and exponential stability criteria of solutions for the QVNNs with discrete time-varying delays and distributed delays by means of generalized 2-norm. In order to avoid the noncommutativity of quaternion multiplication, the QVDNN system is firstly decomposed into four real-number systems by Hamilton rules. Then, we obtain the sufficient criteria for the existence, uniqueness and exponential stability of solutions by special Lyapunov-type functional, Cauchy convergence principle and monotone function. Furthermore, several corollaries are derived from the main results. Finally, we give one numerical example and its simulated figures to illustrate the effectiveness of the obtained conclusion

    Finite-time Stability, Dissipativity and Passivity Analysis of Discrete-time Neural Networks Time-varying Delays

    Get PDF
    The neural network time-varying delay was described as the dynamic properties of a neural cell, including neural functional and neural delay differential equations. The differential expression explains the derivative term of current and past state. The objective of this paper obtained the neural network time-varying delay. A delay-dependent condition is provided to ensure the considered discrete-time neural networks with time-varying delays to be finite-time stability, dissipativity, and passivity. This paper using a new Lyapunov-Krasovskii functional as well as the free-weighting matrix approach and a linear matrix inequality analysis (LMI) technique constructing to a novel sufficient criterion on finite-time stability, dissipativity, and passivity of the discrete-time neural networks with time-varying delays for improving. We propose sufficient conditions for discrete-time neural networks with time-varying delays. An effective LMI approach derives by base the appropriate type of Lyapunov functional. Finally, we present the effectiveness of novel criteria of finite-time stability, dissipativity, and passivity condition of discrete-time neural networks with time-varying delays in the form of linear matrix inequality (LMI)
    corecore