1,077 research outputs found

    Systematic review of energy theft practices and autonomous detection through artificial intelligence methods

    Get PDF
    Energy theft poses a significant challenge for all parties involved in energy distribution, and its detection is crucial for maintaining stable and financially sustainable energy grids. One potential solution for detecting energy theft is through the use of artificial intelligence (AI) methods. This systematic review article provides an overview of the various methods used by malicious users to steal energy, along with a discussion of the challenges associated with implementing a generalized AI solution for energy theft detection. In this work, we analyze the benefits and limitations of AI methods, including machine learning, deep learning, and neural networks, and relate them to the specific thefts also analyzing problems arising with data collection. The article proposes key aspects of generalized AI solutions for energy theft detection, such as the use of smart meters and the integration of AI algorithms with existing utility systems. Overall, we highlight the potential of AI methods to detect various types of energy theft and emphasize the need for further research to develop more effective and generalized detection systems, providing key aspects of possible generalized solutions

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table

    Comprehensive Survey and Taxonomies of False Injection Attacks in Smart Grid: Attack Models, Targets, and Impacts

    Full text link
    Smart Grid has rapidly transformed the centrally controlled power system into a massively interconnected cyber-physical system that benefits from the revolutions happening in the communications (e.g. 5G) and the growing proliferation of the Internet of Things devices (such as smart metres and intelligent electronic devices). While the convergence of a significant number of cyber-physical elements has enabled the Smart Grid to be far more efficient and competitive in addressing the growing global energy challenges, it has also introduced a large number of vulnerabilities culminating in violations of data availability, integrity, and confidentiality. Recently, false data injection (FDI) has become one of the most critical cyberattacks, and appears to be a focal point of interest for both research and industry. To this end, this paper presents a comprehensive review in the recent advances of the FDI attacks, with particular emphasis on 1) adversarial models, 2) attack targets, and 3) impacts in the Smart Grid infrastructure. This review paper aims to provide a thorough understanding of the incumbent threats affecting the entire spectrum of the Smart Grid. Related literature are analysed and compared in terms of their theoretical and practical implications to the Smart Grid cybersecurity. In conclusion, a range of technical limitations of existing false data attack research is identified, and a number of future research directions is recommended.Comment: Double-column of 24 pages, prepared based on IEEE Transaction articl

    Key Management Systems for Smart Grid Advanced Metering Infrastructure: A Survey

    Full text link
    Smart Grids are evolving as the next generation power systems that involve changes in the traditional ways of generation, transmission and distribution of power. Advanced Metering Infrastructure (AMI) is one of the key components in smart grids. An AMI comprises of systems and networks, that collects and analyzes data received from smart meters. In addition, AMI also provides intelligent management of various power-related applications and services based on the data collected from smart meters. Thus, AMI plays a significant role in the smooth functioning of smart grids. AMI is a privileged target for security attacks as it is made up of systems that are highly vulnerable to such attacks. Providing security to AMI is necessary as adversaries can cause potential damage against infrastructures and privacy in smart grid. One of the most effective and challenging topic's identified, is the Key Management System (KMS), for sustaining the security concerns in AMI. Therefore, KMS seeks to be a promising research area for future development of AMI. This survey work highlights the key security issues of advanced metering infrastructures and focuses on how key management techniques can be utilized for safeguarding AMI. First of all, we explore the main features of advanced metering infrastructures and identify the relationship between smart grid and AMI. Then, we introduce the security issues and challenges of AMI. We also provide a classification of the existing works in literature that deal with secure key management system in AMI. Finally, we identify possible future research directions of KMS in AMI

    Crossing Roads of Federated Learning and Smart Grids: Overview, Challenges, and Perspectives

    Full text link
    Consumer's privacy is a main concern in Smart Grids (SGs) due to the sensitivity of energy data, particularly when used to train machine learning models for different services. These data-driven models often require huge amounts of data to achieve acceptable performance leading in most cases to risks of privacy leakage. By pushing the training to the edge, Federated Learning (FL) offers a good compromise between privacy preservation and the predictive performance of these models. The current paper presents an overview of FL applications in SGs while discussing their advantages and drawbacks, mainly in load forecasting, electric vehicles, fault diagnoses, load disaggregation and renewable energies. In addition, an analysis of main design trends and possible taxonomies is provided considering data partitioning, the communication topology, and security mechanisms. Towards the end, an overview of main challenges facing this technology and potential future directions is presented

    Energy Data Analytics for Smart Meter Data

    Get PDF
    The principal advantage of smart electricity meters is their ability to transfer digitized electricity consumption data to remote processing systems. The data collected by these devices make the realization of many novel use cases possible, providing benefits to electricity providers and customers alike. This book includes 14 research articles that explore and exploit the information content of smart meter data, and provides insights into the realization of new digital solutions and services that support the transition towards a sustainable energy system. This volume has been edited by Andreas Reinhardt, head of the Energy Informatics research group at Technische Universität Clausthal, Germany, and Lucas Pereira, research fellow at Técnico Lisboa, Portugal

    Vulnerability Assessment and Privacy-preserving Computations in Smart Grid

    Get PDF
    Modern advances in sensor, computing, and communication technologies enable various smart grid applications which highlight the vulnerability that requires novel approaches to the field of cybersecurity. While substantial numbers of technologies have been adopted to protect cyber attacks in smart grid, there lacks a comprehensive review of the implementations, impacts, and solutions of cyber attacks specific to the smart grid.In this dissertation, we are motivated to evaluate the security requirements for the smart grid which include three main properties: confidentiality, integrity, and availability. First, we review the cyber-physical security of the synchrophasor network, which highlights all three aspects of security issues. Taking the synchrophasor network as an example, we give an overview of how to attack a smart grid network. We test three types of attacks and show the impact of each attack consisting of denial-of-service attack, sniffing attack, and false data injection attack.Next, we discuss how to protect against each attack. For protecting availability, we examine possible defense strategies for the associated vulnerabilities.For protecting data integrity, a small-scale prototype of secure synchrophasor network is presented with different cryptosystems. Besides, a deep learning based time-series anomaly detector is proposed to detect injected measurement. Our approach observes both data measurements and network traffic features to jointly learn system states and can detect attacks when state vector estimator fails.For protecting data confidentiality, we propose privacy-preserving algorithms for two important smart grid applications. 1) A distributed privacy-preserving quadratic optimization algorithm to solve Security Constrained Optimal Power Flow (SCOPF) problem. The SCOPF problem is decomposed into small subproblems using the Alternating Direction Method of Multipliers (ADMM) and gradient projection algorithms. 2) We use Paillier cryptosystem to secure the computation of the power system dynamic simulation. The IEEE 3-Machine 9-Bus System is used to implement and demonstrate the proposed scheme. The security and performance analysis of our implementations demonstrate that our algorithms can prevent chosen-ciphertext attacks at a reasonable cost
    • …
    corecore