26,363 research outputs found

    Finite State Machines With Input Multiplexing: A Performance Study

    Get PDF
    Finite state machines with input multiplexing (FSMIMs) have been proposed in previous works as a technique for efficient mapping FSMs into ROM memory. In this paper, we propose a new architecture for implementing FSMIMs, called FSMIM with state-based input selection, whose goal is to achieve a further reduction in memory usage. This paper also describes in detail the algorithms for generating FSMIMs used by the tool FSMIM-Gen, which has been developed and made available on the Internet for free public use. A comparative study in terms of speed and area between FSMIM approaches and other field programmable gate array-based techniques is presented. The results show that the FSMIM approaches obtain huge reductions in the look-up table (LUT) usage by using a small number of embedded memory blocks. In addition, speed improvements over conventional LUT-based implementations have been obtained in many cases

    Sequential Circuit Design for Embedded Cryptographic Applications Resilient to Adversarial Faults

    Get PDF
    In the relatively young field of fault-tolerant cryptography, the main research effort has focused exclusively on the protection of the data path of cryptographic circuits. To date, however, we have not found any work that aims at protecting the control logic of these circuits against fault attacks, which thus remains the proverbial Achilles’ heel. Motivated by a hypothetical yet realistic fault analysis attack that, in principle, could be mounted against any modular exponentiation engine, even one with appropriate data path protection, we set out to close this remaining gap. In this paper, we present guidelines for the design of multifault-resilient sequential control logic based on standard Error-Detecting Codes (EDCs) with large minimum distance. We introduce a metric that measures the effectiveness of the error detection technique in terms of the effort the attacker has to make in relation to the area overhead spent in implementing the EDC. Our comparison shows that the proposed EDC-based technique provides superior performance when compared against regular N-modular redundancy techniques. Furthermore, our technique scales well and does not affect the critical path delay

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature
    corecore