2,844 research outputs found

    Byzantine Fault Tolerance for Nondeterministic Applications

    Full text link
    All practical applications contain some degree of nondeterminism. When such applications are replicated to achieve Byzantine fault tolerance (BFT), their nondeterministic operations must be controlled to ensure replica consistency. To the best of our knowledge, only the most simplistic types of replica nondeterminism have been dealt with. Furthermore, there lacks a systematic approach to handling common types of nondeterminism. In this paper, we propose a classification of common types of replica nondeterminism with respect to the requirement of achieving Byzantine fault tolerance, and describe the design and implementation of the core mechanisms necessary to handle such nondeterminism within a Byzantine fault tolerance framework.Comment: To appear in the proceedings of the 3rd IEEE International Symposium on Dependable, Autonomic and Secure Computing, 200

    Computing with cells: membrane systems - some complexity issues.

    Full text link
    Membrane computing is a branch of natural computing which abstracts computing models from the structure and the functioning of the living cell. The main ingredients of membrane systems, called P systems, are (i) the membrane structure, which consists of a hierarchical arrangements of membranes which delimit compartments where (ii) multisets of symbols, called objects, evolve according to (iii) sets of rules which are localised and associated with compartments. By using the rules in a nondeterministic/deterministic maximally parallel manner, transitions between the system configurations can be obtained. A sequence of transitions is a computation of how the system is evolving. Various ways of controlling the transfer of objects from one membrane to another and applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied. Membrane systems have a great potential for implementing massively concurrent systems in an efficient way that would allow us to solve currently intractable problems once future biotechnology gives way to a practical bio-realization. In this paper we survey some interesting and fundamental complexity issues such as universality vs. nonuniversality, determinism vs. nondeterminism, membrane and alphabet size hierarchies, characterizations of context-sensitive languages and other language classes and various notions of parallelism

    From Finite Automata to Regular Expressions and Back--A Summary on Descriptional Complexity

    Full text link
    The equivalence of finite automata and regular expressions dates back to the seminal paper of Kleene on events in nerve nets and finite automata from 1956. In the present paper we tour a fragment of the literature and summarize results on upper and lower bounds on the conversion of finite automata to regular expressions and vice versa. We also briefly recall the known bounds for the removal of spontaneous transitions (epsilon-transitions) on non-epsilon-free nondeterministic devices. Moreover, we report on recent results on the average case descriptional complexity bounds for the conversion of regular expressions to finite automata and brand new developments on the state elimination algorithm that converts finite automata to regular expressions.Comment: In Proceedings AFL 2014, arXiv:1405.527
    • …
    corecore