853 research outputs found

    Nice labeling problem for event structures: a counterexample

    Full text link
    In this note, we present a counterexample to a conjecture of Rozoy and Thiagarajan from 1991 (called also the nice labeling problem) asserting that any (coherent) event structure with finite degree admits a labeling with a finite number of labels, or equivalently, that there exists a function f:N↩Nf: \mathbb{N} \mapsto \mathbb{N} such that an event structure with degree ≀n\le n admits a labeling with at most f(n)f(n) labels. Our counterexample is based on the Burling's construction from 1965 of 3-dimensional box hypergraphs with clique number 2 and arbitrarily large chromatic numbers and the bijection between domains of event structures and median graphs established by Barth\'elemy and Constantin in 1993

    Decentralized Approach to Evolve the Structure of Metamorphic Robots

    Get PDF
    International audienceMetamorphic robots are robots that can change their shape by reorganizing the connectivity of their modules to adapt to new environments, perform new tasks, or recover from damages. In this paper we present a decentralized method for structural evolving of a class of lattice-based simulated metamorphic robots in a static environment. These robots are considered as a set of crystalline (compressible) modules that are able to connect or disconnect one from each another or even exchange information and energy with the neighbor modules in order to form various structures/patterns dynamically. Our approach is splitted in two layers: in the first layer a genetic algorithm is used to generate a number of well suited target configurations based on current information perceived from environment, while in the second layer a PacMan-like algorithm is used to make a plan for modules movement to transform the robot from its current pattern to the target pattern emerged in first layer

    The configuration space of a robotic arm in a tunnel of width 2

    Get PDF
    International audienceWe study the motion of a robotic arm inside a rectangular tunnel of width 2. We prove that the configuration space S of all possible positions of the robot is a CAT(0) cubical complex. Before this work, very few families of robots were known to have CAT(0) configuration spaces. This property allows us to move the arm optimally from one position to another

    The Fuzziness in Molecular, Supramolecular, and Systems Chemistry

    Get PDF
    Fuzzy Logic is a good model for the human ability to compute words. It is based on the theory of fuzzy set. A fuzzy set is different from a classical set because it breaks the Law of the Excluded Middle. In fact, an item may belong to a fuzzy set and its complement at the same time and with the same or different degree of membership. The degree of membership of an item in a fuzzy set can be any real number included between 0 and 1. This property enables us to deal with all those statements of which truths are a matter of degree. Fuzzy logic plays a relevant role in the field of Artificial Intelligence because it enables decision-making in complex situations, where there are many intertwined variables involved. Traditionally, fuzzy logic is implemented through software on a computer or, even better, through analog electronic circuits. Recently, the idea of using molecules and chemical reactions to process fuzzy logic has been promoted. In fact, the molecular word is fuzzy in its essence. The overlapping of quantum states, on the one hand, and the conformational heterogeneity of large molecules, on the other, enable context-specific functions to emerge in response to changing environmental conditions. Moreover, analog input–output relationships, involving not only electrical but also other physical and chemical variables can be exploited to build fuzzy logic systems. The development of “fuzzy chemical systems” is tracing a new path in the field of artificial intelligence. This new path shows that artificially intelligent systems can be implemented not only through software and electronic circuits but also through solutions of properly chosen chemical compounds. The design of chemical artificial intelligent systems and chemical robots promises to have a significant impact on science, medicine, economy, security, and wellbeing. Therefore, it is my great pleasure to announce a Special Issue of Molecules entitled “The Fuzziness in Molecular, Supramolecular, and Systems Chemistry.” All researchers who experience the Fuzziness of the molecular world or use Fuzzy logic to understand Chemical Complex Systems will be interested in this book

    EDUCATION AS MYTHIC IMAGE

    Get PDF
    Mythopoetry, the imagistic voice of the muses which manifests in myth and natural poetry, has been invoked as an impression of ideal curriculum with which to cherish intimate, vital experience (and to oppose its exile from educational life). In this statement, I intend to see through the pleasant surface of the label, mythopoetry, to see what image may lie just out of sight, beyond the "inspired writing" that mythopoetry implies. Beyond words themselves, meaning is found in sound and in expressive representation. “Music, when soft voices die, / Vibrates in the memory” (Shelley

    A Polynomial Time Algorithm to Compute Geodesics in CAT(0) Cubical Complexes

    Get PDF
    This paper presents the first polynomial time algorithm to compute geodesics in a CAT(0) cubical complex in general dimension. The algorithm is a simple iterative method to update breakpoints of a path joining two points using Miller, Owen and Provan\u27s algorithm (Adv. in Appl. Math, 2015) as a subroutine. Our algorithm is applicable to any CAT(0) space in which geodesics between two close points can be computed, not limited to CAT(0) cubical complexes

    Motion planning for self-reconfiguring robotic systems

    Get PDF
    Robots that can actively change morphology offer many advantages over fixed shape, or monolithic, robots: flexibility, increased maneuverability and modularity. So called self-reconfiguring systems (SRS) are endowed with a shape changing ability enabled by an active connection mechanism. This mechanism allows a mechanical link to be engaged or disengaged between two neighboring robotic subunits. Through utilization of embedded joints to change the geometry plus the connection mechanism to change the topology of the kinematics, a collection of robotic subunits can drastically alter the overall kinematics. Thus, an SRS is a large robot comprised of many small cooperating robots that is able to change its morphology on demand. By design, such a system has many and variable degrees of freedom (DOF). To gain the benefits of self-reconfiguration, the process of morphological change needs to be controlled in response to the environment. This is a motion planning problem in a high dimensional configuration space. This problem is complex because each subunit only has a few internal DOFs, and each subunit's range of motion depends on the state of its connected neighbors. Together with the high dimensionality, the problem may initially appear to be intractable, because as the number of subunits grow, the state space expands combinatorially. However, there is hope. If individual robotic subunits are identical, then there will exist some form of regularity in the resulting state space of the conglomerate. If this regularity can be exploited, then there may exist tractable motion planning algorithms for self-reconfiguring system. Existing approaches in the literature have been successful in developing algorithms for specific SRSs. However, it is not possible to transfer one motion planning algorithm onto another system. SRSs share a similar form of regularity, so one might hope that a tool from mathematical literature would identify the common properties that are exploitable for motion planning. So, while there exists a number of algorithms for certain subsets of possible SRS instantiations, there is no general motion planning methodology applicable to all SRSs. In this thesis, firstly, the best existing general motion planning techniques were evaluated to the SRS motion planning problem. Greedy search, simulated annealing, rapidly exploring random trees and probabilistic roadmap planning were found not to scale well, requiring exponential computation time, as the number of subunits in the SRS increased. The planners performance was limited by the availability of a good general purpose heuristic. There does not currently exist a heuristic which can accurately guide a path through the search space toward a far away goal configuration. Secondly, it is shown that a computationally efficient reconfiguration algorithms do exist by development of an efficient motion planning algorithm for an exemplary SRS, the Claytronics formulation of the Hexagonal Metamorphic Robot (HMR). The developed algorithm was able to solve a randomly generated shape-to-shape planning task for the SRS in near linear time as the number of units in the configuration grew. Configurations containing 20,000 units were solvable in under ten seconds on modest computational hardware. The key to the success of the approach was discovering a subspace of the motion planning space that corresponded with configurations with high mobility. Plans could be discovered in this sub-space much more readily because the risk of the search entering a blind alley was greatly reduced. Thirdly, in order to extract general conclusions, the efficient subspace, and other efficient subspaces utilized in other works, are analyzed using graph theoretic methods. The high mobility is observable as an increase in the state space's Cheeger constant, which can be estimated with a local sampling procedure. Furthermore, state spaces associated with an efficient motion planning algorithm are well ordered by the graph minor relation. These qualitative observations are discoverable by machine without human intervention, and could be useful components in development of a general purpose SRS motion planner compiler
    • 

    corecore