55,690 research outputs found

    Automata and rational expressions

    Full text link
    This text is an extended version of the chapter 'Automata and rational expressions' in the AutoMathA Handbook that will appear soon, published by the European Science Foundation and edited by JeanEricPin

    Simple nonlinear models suggest variable star universality

    Full text link
    Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114 (2015) 054101] that the Kepler data includes "golden" stars, whose luminosities vary quasiperiodically with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law scaling with exponent near -1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we use a series of phenomenological models to make plausible the connection between golden stars and fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal nonlinear phenomena common to even simple systems.Comment: 9 pages, 9 figures, accepted for publication in Physica

    The set of realizations of a max-plus linear sequence is semi-polyhedral

    Get PDF
    We show that the set of realizations of a given dimension of a max-plus linear sequence is a finite union of polyhedral sets, which can be computed from any realization of the sequence. This yields an (expensive) algorithm to solve the max-plus minimal realization problem. These results are derived from general facts on rational expressions over idempotent commutative semirings: we show more generally that the set of values of the coefficients of a commutative rational expression in one letter that yield a given max-plus linear sequence is a semi-algebraic set in the max-plus sense. In particular, it is a finite union of polyhedral sets

    Enhanced Gauge Symmetry in Type II and F-Theory Compactifications: Dynkin Diagrams from Polyhedra

    Get PDF
    We explain the observation by Candelas and Font that the Dynkin diagrams of nonabelian gauge groups occurring in type IIA and F-theory can be read off from the polyhedron Δ∗\Delta^* that provides the toric description of the Calabi-Yau manifold used for compacification. We show how the intersection pattern of toric divisors corresponding to the degeneration of elliptic fibers follows the ADE classification of singularities and the Kodaira classification of degenerations. We treat in detail the cases of elliptic K3 surfaces and K3 fibered threefolds where the fiber is again elliptic. We also explain how even the occurrence of monodromy and non-simply laced groups in the latter case is visible in the toric picture. These methods also work in the fourfold case.Comment: 26 pages, LaTeX2e, 17 figures, references adde

    Constraining Exoplanet Mass from Transmission Spectroscopy

    Full text link
    Determination of an exoplanet's mass is a key to understanding its basic properties, including its potential for supporting life. To date, mass constraints for exoplanets are predominantly based on radial velocity (RV) measurements, which are not suited for planets with low masses, large semi-major axes, or those orbiting faint or active stars. Here, we present a method to extract an exoplanet's mass solely from its transmission spectrum. We find good agreement between the mass retrieved for the hot Jupiter HD189733b from transmission spectroscopy with that from RV measurements. Our method will be able to retrieve the masses of Earth-sized and super-Earth planets using data from future space telescopes that were initially designed for atmospheric characterization.Comment: 66 pages, 25 figures, published in the December 20, 2013 edition of Science Magazine. Includes supplementary material
    • 

    corecore