2,101 research outputs found

    On star edge colorings of bipartite and subcubic graphs

    Full text link
    A star edge coloring of a graph is a proper edge coloring with no 22-colored path or cycle of length four. The star chromatic index χst′(G)\chi'_{st}(G) of GG is the minimum number tt for which GG has a star edge coloring with tt colors. We prove upper bounds for the star chromatic index of complete bipartite graphs; in particular we obtain tight upper bounds for the case when one part has size at most 33. We also consider bipartite graphs GG where all vertices in one part have maximum degree 22 and all vertices in the other part has maximum degree bb. Let kk be an integer (k≥1k\geq 1), we prove that if b=2k+1b=2k+1 then χst′(G)≤3k+2\chi'_{st}(G) \leq 3k+2; and if b=2kb=2k, then χst′(G)≤3k\chi'_{st}(G) \leq 3k; both upper bounds are sharp. Finally, we consider the well-known conjecture that subcubic graphs have star chromatic index at most 66; in particular we settle this conjecture for cubic Halin graphs.Comment: 18 page

    Some Results on incidence coloring, star arboricity and domination number

    Full text link
    Two inequalities bridging the three isolated graph invariants, incidence chromatic number, star arboricity and domination number, were established. Consequently, we deduced an upper bound and a lower bound of the incidence chromatic number for all graphs. Using these bounds, we further reduced the upper bound of the incidence chromatic number of planar graphs and showed that cubic graphs with orders not divisible by four are not 4-incidence colorable. The incidence chromatic numbers of Cartesian product, join and union of graphs were also determined.Comment: 8 page
    • …
    corecore