86 research outputs found

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≀⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≀d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    Short proofs of some extremal results

    Get PDF
    We prove several results from different areas of extremal combinatorics, giving complete or partial solutions to a number of open problems. These results, coming from areas such as extremal graph theory, Ramsey theory and additive combinatorics, have been collected together because in each case the relevant proofs are quite short.Comment: 19 page

    Large cliques or co-cliques in hypergraphs with forbidden order-size pairs

    Full text link
    The well-known Erd\H{o}s-Hajnal conjecture states that for any graph FF, there exists Ï”>0\epsilon>0 such that every nn-vertex graph GG that contains no induced copy of FF has a homogeneous set of size at least nÏ”n^{\epsilon}. We consider a variant of the Erd\H{o}s-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on mm vertices and ff edges for any positive mm and 0≀f≀(m2)0\leq f \leq \binom{m}{2}, then we obtain large homogeneous sets. For triple systems, in the first nontrivial case m=4m=4, for every S⊆{0,1,2,3,4}S \subseteq \{0,1,2,3,4\}, we give bounds on the minimum size of a homogeneous set in a triple system where the number of edges spanned by every four vertices is not in SS. In most cases the bounds are essentially tight. We also determine, for all SS, whether the growth rate is polynomial or polylogarithmic. Some open problems remain.Comment: A preliminary version of this manuscript appeared as arXiv:2303.0957

    Analytic methods for uniform hypergraphs

    Full text link
    This paper develops analityc methods for investigating uniform hypergraphs. Its starting point is the spectral theory of 2-graphs, in particular, the largest and the smallest eigenvalues of 2-graphs. On the one hand, this simple setup is extended to weighted r-graphs, and on the other, the eigenvalues-numbers are generalized to eigenvalues-functions, which encompass also other graph parameters like Lagrangians and number of edges. The resulting theory is new even for 2-graphs, where well-settled topics become challenges again. The paper covers a multitude of topics, with more than a hundred concrete statements to underpin an analytic theory for hypergraphs. Essential among these topics are a Perron-Frobenius type theory and methods for extremal hypergraph problems. Many open problems are raised and directions for possible further research are outlined.Comment: 71 pages. Corrected wrong claim in the introductio

    Master index of volumes 161–170

    Get PDF

    Large cliques or cocliques in hypergraphs with forbidden order-size pairs

    Get PDF
    The well-known ErdƑs-Hajnal conjecture states that for any graph FF, there exists Ï”>0Ï”>0 such that every nn-vertex graph GG that contains no induced copy of FF has a homogeneous set of size at least nÏ”n^Ï”. We consider a variant of the ErdƑs-Hajnal problem for hypergraphs where we forbid a family of hypergraphs described by their orders and sizes. For graphs, we observe that if we forbid induced subgraphs on mm vertices and ff edges for any positive mm and 0≀f≀(m2)0≀f≀(m2), then we obtain large homogeneous sets. For triple systems, in the first nontrivial case m=4m=4, for every S⊆0,1,2,3,4S⊆{0,1,2,3,4}, we give bounds on the minimum size of a homogeneous set in a triple system where the number of edges spanned by every four vertices is not in SS. In most cases the bounds are essentially tight. We also determine, for all SS, whether the growth rate is polynomial or polylogarithmic. Some open problems remain
    • 

    corecore