34 research outputs found

    HYPERVELOCITY MISSILES FOR DEFENCE

    Get PDF
    The paper reviews the history of technical development in the field of hypervelocity missiles. It highlights the fact that the development of anti-ballistic systems in USA, Russia, France, UK, Sweden, and Israel is moving toward the final deployment stage; that USA and Israel are trying to sell PAC 2 and Arrow 2 to India; and that Indiaโ€™s Agni and Prithvi missiles have improved their accuracy, with assistance from Russia. Consequently, the paper proposes enhanced effort for development in Pakistan of a basic hypersonic tactical missile, with 300 KM range, 500 KG payload, and multi-role capability. The author argues that a system, developed within the country, at the existing or upgraded facilities, will not violate MTCR restrictions, and would greatly enhance the countryโ€™s defense capability. Furthermore, it would provide high technology jobs to Pakistani citizens. The paper reinforces the idea by suggesting that evolution in the field of aviation and electronics favors the development of ballistic, cruise and guided missile technologies; and that flight time of short and intermediate range missiles is so short that its interception is virtually impossible

    ๋™์‹œ๋„๋‹ฌ์„ ๊ณ ๋ คํ•œ ๋ณต์ˆ˜ ๋ฌด์ธ๊ธฐ ์ž„๋ฌดํ• ๋‹น ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2017. 8. ๊น€์œ ๋‹จ.๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ์ž์œจ๋น„ํ–‰ ๊ธฐ์ˆ ์ด ์„ฑ์ˆ™ํ•จ์— ๋”ฐ๋ผ ๋ฌด์ธํ•ญ๊ณต๊ธฐ์— ์š”๊ตฌ๋˜๋Š” ์ž„๋ฌด์˜ ๋ณต์žก๋„์™€ ์ •๋ฐ€๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ์—๋Š” ๋‹จ์ผ ๋ฌด์ธํ•ญ๊ณต๊ธฐ์— ์˜ํ•œ ๊ฐ์‹œ์ •์ฐฐ ์ž„๋ฌด์—์„œ ๋‚˜์•„๊ฐ€ ๋‹ค์ˆ˜์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ํ˜‘๋ ฅ์ ์ธ ์ž„๋ฌด์ˆ˜ํ–‰ ๋Šฅ๋ ฅ์— ๊ด€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ํ˜‘์—…์— ์˜ํ•œ ์ž ์žฌ๋ ฅ์„ ์ตœ๋Œ€ํ•œ์œผ๋กœ ํ™œ์šฉํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๋‹ค์ˆ˜์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๊ฐ€ ๋™์‹œ์— ์ˆ˜ํ–‰ํ•ด์•ผ ํ•˜๋Š” ์ž„๋ฌด๋ฅผ ๊ณ ๋ คํ•˜์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์ž„๋ฌด๋กœ๋Š” ์œ„ํ—˜๋„๊ฐ€ ๋†’์€ ๋ฐฉ์–ด ์‹œ์Šคํ…œ์„ ๋™์‹œ์— ๊ณต๊ฒฉํ•˜๋Š” ์ž„๋ฌด, ๋„“์€ ์žฌ๋‚œ์ง€์—ญ์„ ๋‹ค์ˆ˜์˜ ๋ฌด์ธ๊ธฐ๊ฐ€ ๋™์‹œ์— ์ˆ˜์ƒ‰, ๋ฌผํ’ˆ์ง€์›, ๊ตฌ์กฐ ๋“ฑ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ์ž„๋ฌด, ๊ทธ๋ฆฌ๊ณ  ๋ฌด๊ฑฐ์šด ๋ฌผ์ฒด๋ฅผ ๋‹ค์ˆ˜์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๊ฐ€ ํ˜‘๋ ฅํ•˜์—ฌ ์ˆ˜์†กํ•˜๋Š” ์ž„๋ฌด ๋“ฑ์„ ๊ณ ๋ คํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์ด ๋ณต์žกํ•œ ์ž„๋ฌด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•ด ์ง€์ƒ ์กฐ์ข…์‚ฌ๋Š” ๋‹ค์ˆ˜์˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋ฅผ ๊ด€์ œํ•˜์—ฌ์•ผ ํ•˜๋ฉฐ, ์ด ๊ณผ์ •์—์„œ ๊ณผ๋„ํ•œ ์—…๋ฌด๋ถ€ํ•˜๋Š” ์กฐ์ข…์‚ฌ ์‹ค์ˆ˜๋ฅผ ์œ ๋ฐœํ•˜์—ฌ ์ž„๋ฌด์ˆ˜ํ–‰ ํšจ์œจ์ €ํ•˜๋กœ ์ด์–ด์งˆ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค์ˆ˜ ๋ฌด์ธํ•ญ๊ณต๊ธฐ์˜ ๋™์‹œ๋„๋‹ฌ์„ ๊ณ ๋ คํ•œ ํ˜‘๋ ฅ ์ž„๋ฌดํ• ๋‹น ๋ฌธ์ œ๋ฅผ ์ •์ˆ˜๊ณ„ํš๋ฒ•์œผ๋กœ ์ •์‹ํ™”ํ•˜๊ณ , ์ค‘์•™์ง‘์ค‘ํ˜• ์ž„๋ฌดํ• ๋‹น ๋ฐฉ์‹๊ณผ ๋ถ„์‚ฐํ˜• ์ž„๋ฌดํ• ๋‹น ๋ฐฉ์‹์„ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋กœ๋ถ€ํ„ฐ ์ˆ˜์ง‘๋œ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ตœ์ ์— ๊ฐ€๊นŒ์šด ์ž„๋ฌดํ• ๋‹น์„ ๊ฒฐ์ •ํ•˜๋Š” ์ค‘์•™์ง‘์ค‘ํ˜• ์ž„๋ฌดํ• ๋‹น ๋ฐฉ์‹์œผ๋กœ๋Š” ๋ชจ๋“  ํ•ด ๊ณต๊ฐ„์„ ํƒ์ƒ‰ํ•˜์—ฌ ์ตœ์ ํ•ด๋ฅผ ๊ณ„์‚ฐํ•˜๋Š” ๋ฐฉ์‹, ๊ฒฝํ—˜์ ์ธ ๋ฒ•์น™์„ ํ†ตํ•ด ์‹ ์†ํ•˜๊ฒŒ ํ•ด๋ฅผ ๊ฒฐ์ •ํ•˜๋Š” ๋ฐฉ์‹, ๊ทธ๋ฆฌ๊ณ  ๋ฉ”ํƒ€ ํœด๋ฆฌ์Šคํ‹ฑ ๊ธฐ๋ฒ•์˜ ์ผ์ข…์ธ ๊ตฐ์ง‘ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•˜๋Š” ๋ฐฉ์‹์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ถ„์‚ฐํ˜• ์ž„๋ฌดํ• ๋‹น ๋ฐฉ์‹์œผ๋กœ๋Š” ๊ฐœ๋ณ„ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋Š” ๋ชจ๋“  ๋ฌด์ธํ•ญ๊ณต๊ธฐ๊ฐ€ ์•„๋‹Œ ์ด์›ƒ ๋ฌด์ธํ•ญ๊ณต๊ธฐ๋“ค๊ณผ๋งŒ ์ •๋ณด๋ฅผ ๊ต๋ฅ˜ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•˜์—ฌ ์ž์œจ์ ์œผ๋กœ ์ž„๋ฌด๋ฅผ ํ• ๋‹นํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œํ•œ๋œ ํ†ต์‹ ๋ฐ˜๊ฒฝ์— ๋”ฐ๋ฅธ ์‹ค์‹œ๊ฐ„ ๋„คํŠธ์›Œํฌ ์œ„์ƒ๋ณ€ํ™” ์ƒํ™ฉ์„ ๊ณ ๋ คํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ง‘๊ฒฐ์ง€ ๊ฐœ๋…์„ ๋„์ž…ํ•˜์˜€์œผ๋ฉฐ, ์—ฐ๊ฒฐ๋œ ๋„คํŠธ์›Œํฌ ์ƒํ™ฉ์— ๋Œ€ํ•˜์—ฌ ์ˆ˜๋ ด์„ฑ๊ณผ ํ™•์žฅ์„ฑ์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ๊ธฐ๋ฒ•๋“ค์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์  ๋Œ€๊ณต๋ง ์ œ์••์ž‘์ „ ์‹œ๋‚˜๋ฆฌ์˜ค์— ๋Œ€ํ•œ ์ˆ˜์น˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ˆ˜ํ–‰ํ•˜๊ณ , ์ œ์•ˆํ•œ ๊ธฐ๋ฒ• ๊ฐ„์˜ ์„ฑ๋Šฅ์„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค.With increasing demand for unmanned aerial vehicles (UAVs) in military and civilian areas, coordination of multiple UAVs is expected to play a key role in complex missions. As the number of agents and tasks increases, however, a greater burden is imposed on ground operators, which may cause safety issues and performance degradation accomplishing the mission. In particular, the operation requiring temporal and spatial cooperation by UAVs is significantly difficult. This dissertation proposes autonomous task allocation algorithms for cooperative timing missions with simultaneous spatial/temporal involvement of multiple agents. After formulating the task allocation problem into integer programming problems in view of UAVs and tasks, centralized and distributed algorithms are proposed. In the centralized approach, an algorithm to find an optimal solution that minimizes the time to complete all the missions is introduced. Since the exact algorithm is time intensive, heuristic algorithms working in a greedy manner are proposed. A metaheuristic approach is also considered to find a near-optimal solution within a feasible duration. In the distributed approach, market-based task allocation algorithms are designed. The mathematical convergence and scalability analyses show that the proposed algorithms have a polynomial time complexity. The baseline algorithms for a connected network are then extended to address time-varying network topology including isolated sub-networks due to a limited communication range. The performance of the proposed algorithms is demonstrated via Monte Carlo simulations for a scenario involving the suppression of enemy air defenses.Chapter 1 Introduction 1 1.1 Motivation and Objective 1 1.2 Literature Survey 3 1.2.1 Vehicle Routing Problem 3 1.2.2 Centralized and Distributed Control 4 1.2.3 Centralized Control: Optimal Coalition Formation Problem 5 1.2.4 Distributed Control 8 1.3 Research Contribution 10 1.3.1 Systematic Problem Formulation 10 1.3.2 Design of a Centralized TA Algorithm for a Cooperative Timing Mission 11 1.3.3 Design of a Distributed TA Algorithm for a Cooperative Timing Mission 11 1.4 Dissertation Organization 12 Chapter 2 Problem Statement 13 2.1 Assumptions 13 2.2 Agent-based Formulation 15 2.3 Task-based Formulation 19 2.4 Simplified Form of Task-based Formulation 21 Chapter 3 Centralized Task Allocation 23 3.1 Assumptions 23 3.2 Exact Algorithm 24 3.3 Agent-based Sequential Greedy Algorithm: A-SGA 26 3.4 Task-based Sequential Greedy Algorithm: T-SGA 28 3.5 Agent-based Particle Swarm Optimization: A-PSO 30 3.5.1 Preliminaries on PSO 30 3.5.2 Particle Encoding 33 3.5.3 Particle Refinement 33 3.5.4 Score Calculation Considering DAG Constraint 34 3.6 Task-based Particle Swarm Optimization: T-PSO 38 3.6.1 Particle Encoding 38 3.6.2 Particle Refinement 39 3.7 Numerical Results 41 Chapter 4 Distributed Task Allocation 49 4.1 Assumptions 50 4.2 Project Manager-oriented Coalition Formation Algorithm : PCFA 51 4.3 Task-oriented Coalition Formation Algorithm: TCFA 63 4.4 Modified Greedy Distributed Allocation Protocol: Modified GDAP 68 4.5 Properties 71 4.5.1 Convergence 71 4.5.2 Scalability 72 4.5.3 Performance 75 4.5.4 Comparison with GDAP 76 4.6 TA Algorithm in Dynamic Environment 79 4.6.1 Challenges in Dynamic Environment 79 4.6.2 Assumptions 79 4.6.3 Distributed TA Architecture in Dynamic Environment 80 4.6.4 Rally Point 85 4.6.5 Convergence 87 4.6.6 Deletion of Duplicated Allocation 87 4.7 Numerical Results 88 4.7.1 Scalability 88 4.7.2 Application: SEAD Scenario 94 4.7.3 Discussion 106 Chapter 5 Conclusions 107 5.1 Concluding Remarks 107 5.1.1 Problem Statement 107 5.1.2 Centralized Task Allocation 107 5.1.3 Distributed Task Allocation 108 5.2 Future Research 110 Abstract (in Korean) 125Docto
    corecore