484 research outputs found

    Vehicular Wireless Communication Standards: Challenges and Comparison

    Get PDF
    Autonomous vehicles (AVs) are the future of mobility. Safe and reliable AVs are required for widespread adoption by a community which is only possible if these AVs can communicate with each other & with other entities in a highly efficient way. AVs require ultra-reliable communications for safety-critical applications to ensure safe driving. Existing vehicular communication standards, i.e., IEEE 802.11p (DSRC), ITS-G5, & LTE, etc., do not meet the requirements of high throughput, ultra-high reliability, and ultra-low latency along with other issues. To address these challenges, IEEE 802.11bd & 5G NR-V2X standards provide more efficient and reliable communication, however, these standards are in the developing stage. Existing literature generally discusses the features of these standards only and does not discuss the drawbacks. Similarly, existing literature does not discuss the comparison between these standards or discusses a comparison between any two standards only. However, this work comprehensively describes different issues/challenges faced by these standards. This work also comprehensively provides a comparison among these standards along with their salient features. The work also describes spectrum management issues comprehensively, i.e., interoperability issues, co-existence with Wi-Fi, etc. The work also describes different other issues comprehensively along with recommendations. The work describes that 802.11bd and 5G NR are the two potential future standards for efficient vehicle communications; however, these standards must be able to provide backward compatibility, interoperability, and co-existence with current and previous standards

    Operating ITS-G5 DSRC over Unlicensed Bands: A City-Scale Performance Evaluation

    Get PDF
    Future Connected and Autonomous Vehicles (CAVs) will be equipped with a large set of sensors. The large amount of generated sensor data is expected to be exchanged with other CAVs and the road-side infrastructure. Both in Europe and the US, Dedicated Short Range Communications (DSRC) systems, based on the IEEE 802.11p Physical Layer, are key enabler for the communication among vehicles. Given the expected market penetration of connected vehicles, the licensed band of 75 MHz, dedicated to DSRC communications, is expected to become increasingly congested. In this paper, we investigate the performance of a vehicular communication system, operated over the unlicensed bands 2.4 GHz - 2.5 GHz and 5.725 GHz - 5.875 GHz. Our experimental evaluation was carried out in a testing track in the centre of Bristol, UK and our system is a full-stack ETSI ITS-G5 implementation. Our performance investigation compares key communication metrics (e.g., packet delivery rate, received signal strength indicator) measured by operating our system over the licensed DSRC and the considered unlicensed bands. In particular, when operated over the 2.4 GHz - 2.5 GHz band, our system achieves comparable performance to the case when the DSRC band is used. On the other hand, as soon as the system, is operated over the 5.725 GHz - 5.875 GHz band, the packet delivery rate is 30% smaller compared to the case when the DSRC band is employed. These findings prove that operating our system over unlicensed ISM bands is a viable option. During our experimental evaluation, we recorded all the generated network interactions and the complete data set has been publicly available.Comment: IEEE PIMRC 2019, to appea

    Open Platforms for Connected Vehicles

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    • …
    corecore