35 research outputs found

    Security Frameworks for Machine-to-Machine Devices and Networks

    Get PDF
    Attacks against mobile systems have escalated over the past decade. There have been increases of fraud, platform attacks, and malware. The Internet of Things (IoT) offers a new attack vector for Cybercriminals. M2M contributes to the growing number of devices that use wireless systems for Internet connection. As new applications and platforms are created, old vulnerabilities are transferred to next-generation systems. There is a research gap that exists between the current approaches for security framework development and the understanding of how these new technologies are different and how they are similar. This gap exists because system designers, security architects, and users are not fully aware of security risks and how next-generation devices can jeopardize safety and personal privacy. Current techniques, for developing security requirements, do not adequately consider the use of new technologies, and this weakens countermeasure implementations. These techniques rely on security frameworks for requirements development. These frameworks lack a method for identifying next generation security concerns and processes for comparing, contrasting and evaluating non-human device security protections. This research presents a solution for this problem by offering a novel security framework that is focused on the study of the “functions and capabilities” of M2M devices and improves the systems development life cycle for the overall IoT ecosystem

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    A COMPREHENSIVE REVIEW OF INTERNET OF THINGS WAVEFORMS FOR A DOD LOW EARTH ORBIT CUBESAT MESH NETWORK

    Get PDF
    The Department of Defense (DOD) requires the military to provide command and control during missions in locations where terrestrial communications infrastructure is unreliable or unavailable, which results in a high reliance on satellite communications (SATCOM). This is problematic because they use and consume more digital data in the operational environment. The DOD has several forms of data capable of meeting Internet of Things (IoT) transmission parameters that could be diversified onto an IoT network. This research assesses the potential for an IoT satellite constellation in Low Earth Orbit to provide an alternative, space-based communication platform to military units while offering increased overall SATCOM capacity and resiliency. This research explores alternative IoT waveforms and compatible transceivers in place of LoRaWAN for the NPS CENETIX Ortbial-1 CubeSat. The study uses a descriptive comparative research approach to simultaneously assess several variables. Five alternative waveforms—Sigfox, NB-IoT, LTE-M, Wi-sun, and Ingenu—are evaluated. NB-IoT, LTE-M, and Ingenu meet the threshold to be feasible alternatives to replace the LoRaWAN waveform in the Orbital-1 CubeSat. Six potential IoT transceivers are assessed as replacements. Two transceivers for the NB-IoT and LTE-M IoT waveforms and one transceiver from U-blox for the Ingenu waveform are assessed as compliant.Lieutenant, United States NavyApproved for public release. Distribution is unlimited
    corecore