12,182 research outputs found

    Clinical handover within the emergency care pathway and the potential risks of clinical handover failure (ECHO) : primary research

    Get PDF
    Background and objectives: Handover and communication failures are a recognised threat to patient safety. Handover in emergency care is a particularly vulnerable activity owing to the high-risk context and overcrowded conditions. In addition, handover frequently takes place across the boundaries of organisations that have different goals and motivations, and that exhibit different local cultures and behaviours. This study aimed to explore the risks associated with handover failure in the emergency care pathway, and to identify organisational factors that impact on the quality of handover. Methods: Three NHS emergency care pathways were studied. The study used a qualitative design. Risks were explored in nine focus group-based risk analysis sessions using failure mode and effects analysis (FMEA). A total of 270 handovers between ambulance and the emergency department (ED), and the ED and acute medicine were audio-recorded, transcribed and analysed using conversation analysis. Organisational factors were explored through thematic analysis of semistructured interviews with a purposive convenience sample of 39 staff across the three pathways. Results: Handover can serve different functions, such as management of capacity and demand, transfer of responsibility and delegation of aspects of care, communication of different types of information, and the prioritisation of patients or highlighting of specific aspects of their care. Many of the identified handover failure modes are linked causally to capacity and patient flow issues. Across the sites, resuscitation handovers lasted between 38 seconds and 4 minutes, handovers for patients with major injuries lasted between 30 seconds and 6 minutes, and referrals to acute medicine lasted between 1 minute and approximately 7 minutes. Only between 1.5% and 5% of handover communication content related to the communication of social issues. Interview participants described a range of tensions inherent in handover that require dynamic trade-offs. These are related to documentation, the verbal communication, the transfer of responsibility and the different goals and motivations that a handover may serve. Participants also described the management of flow of patients and of information across organisational boundaries as one of the most important factors influencing the quality of handover. This includes management of patient flows in and out of departments, the influence of time-related performance targets, and the collaboration between organisations and departments. The two themes are related. The management of patient flow influences the way trade-offs around inner tensions are made, and, on the other hand, one of the goals of handover is ensuring adequate management of patient flows. Conclusions: The research findings suggest that handover should be understood as a sociotechnical activity embedded in clinical and organisational practice. Capacity, patient flow and national targets, and the quality of handover are intricately related, and should be addressed together. Improvement efforts should focus on providing practitioners with flexibility to make trade-offs in order to resolve tensions inherent in handover. Collaborative holistic system analysis and greater cultural awareness and collaboration across organisations should be pursued

    Deliverable 9 - Evaluation report of training and the use of training tools

    Get PDF
    Van der Klink, M. R., Kicken, W., Drachsler, H., Stoyanov, S., & Boshuizen, H. P. A. (2011). Deliverable 9 - Evaluation report of training and the use of training tools. Heerlen, The Netherlands, Open Universiteit in the Netherlands.This deliverable describes the design, development and evaluation of a learning network that was developed for medical professionals interested and/or responsible for improving handoversHandover - 2008 - 22340

    XIII Magazine News Review, nĀ°11 - Issue Number 2/1993

    Get PDF

    SatNEx: A Network of Excellence Providing Training in Satellite Communications

    Get PDF
    YesSatellite communications represents a specialised area of telecommunications. While the development of satellite technology is relatively slow in comparison to wireless networks evolution, due to the need for high reliability, the services that satellites are able to offer are evolving at much the same pace as their terrestrial counterparts. It is within this context that the satellite communications network of excellence (SatNEx) has evolved its initiative, the aim being to serve the engineering community with the latest technological trends, while also providing a solid grounding in the fundamentals for those new to the subject area.European Commission Framework Programme

    Making Quantum Technology Ready for Industry

    Get PDF
    The Quantum Technologies Flagship, officially launched on 29 October 2018 in Vienna, is a EUR 1 billion initiative, supported by the European Commission and Member States, funding over 5,000 of Europe's leading Quantum Technologies researchers over the next ten years and aiming at placing Europe at the forefront of the second quantum revolution. Its long-term vision is to develop a quantum web, where quantum computers, simulators and sensors are interconnected via quantum communication networks. This will help kick-starting a competitive European quantum industry transforming research results into commercial applications and disruptive technologies. The Joint Research Center (JRC) in cooperation with the European Committee for Standardization (CEN) and the European Committee for Electrotechnical Standardization (CENELEC), European Commissionā€™s Directorate General Communications Networks, Content and Technology (DG CNECT), and the German Institute of Standardisation (DIN), organised in Brussels on 28-29 March 2019 the Putting-Science-Into-Standards (PSIS) workshop on Quantum Technologies. The PSIS workshops is an initiative that brings together researchers, industry and standardisers with the purpose of facilitating the identification and screening of emerging science and technology areas that can be introduced early into the process of standardisation to enable innovation. The experience with the innovation impact pathway of the Graphene Flagship that combined technology push and market pull by working with industry stakeholders was used to demonstrate the benefit of a strategic use of standardisation to increase technology readiness levels and reach the market. The participants of the workshop identified aspects that would benefit from standardisation activities in three main areas: (i) Quantum Key Distribution and quantum-safe security, (ii) Quantum metrology, sensing and imaging, (iii) and Quantum computing and internet. Several existing standardisation activities focussing on quantum enabled security techniques, quantum computing and communication were also mapped. With the direct involvement of the participants, the workshop prepared the ground towards a roadmap of additional pressing technology fields where standardisation could add value to the deployment of Quantum Technologies in industrial applications, including security, sensing, imaging and measurement. An active dialogue between the communities of researchers and standardisers as well as a continuous interchange with the Quantum Technologies Flagship would be beneficial for future interactions and cooperation. The Standards, Innovation and Research Platform (STAIR / CEN and CENELEC) methodology could constitute a straightforward approach to host interactions between the communities of researchers and standardisers. Next steps would be to start an interaction (e.g. a cooperation agreement) with the Quantum Flagship and in particular with the recently (April 2019) launched Coordination and Support Action of the Quantum Flagship. As concrete actions for standardisation, the workshop suggested to focus on the standardisation of a quantum technology terminology and on the development of an EU standardisation roadmap for Quantum Technologies. These could be addressed by a European Committee for Standardization workshop or by a focus group.JRC.A.5-Scientific Developmen
    • ā€¦
    corecore