596 research outputs found

    Spatial adaptivity of the SAAF and Weighted Least Squares (WLS) forms of the neutron transport equation using constraint based, locally refined, isogeometric analysis (IGA) with dual weighted residual (DWR) error measures

    Get PDF
    This paper describes a methodology that enables NURBS (Non-Uniform Rational B-spline) based Isogeometric Analysis (IGA) to be locally refined. The methodology is applied to continuous Bubnov-Galerkin IGA spatial discretisations of second-order forms of the neutron transport equation. In particular this paper focuses on the self-adjoint angular flux (SAAF) and weighted least squares (WLS) equations. Local refinement is achieved by constraining degrees of freedom on interfaces between NURBS patches that have different levels of spatial refinement. In order to effectively utilise constraint based local refinement, adaptive mesh refinement (AMR) algorithms driven by a heuristic error measure or forward error indicator (FEI) and a dual weighted residual (DWR) or goal-based error measure (WEI) are derived. These utilise projection operators between different NURBS meshes to reduce the amount of computational effort required to calculate the error indicators. In order to apply the WEI to the SAAF and WLS second-order forms of the neutron transport equation the adjoint of these equations are required. The physical adjoint formulations are derived and the process of selecting source terms for the adjoint neutron transport equation in order to calculate the error in a given quantity of interest (QoI) is discussed. Several numerical verification benchmark test cases are utilised to investigate how the constraint based local refinement affects the numerical accuracy and the rate of convergence of the NURBS based IGA spatial discretisation. The nuclear reactor physics verification benchmark test cases show that both AMR algorithms are superior to uniform refinement with respect to accuracy per degree of freedom. Furthermore, it is demonstrated that for global QoI the FEI driven AMR and WEI driven AMR produce similar results. However, if local QoI are desired then WEI driven AMR algorithm is more computationally efficient and accurate per degree of freedom

    Self-adaptive isogeometric spatial discretisations of the first and second-order forms of the neutron transport equation with dual-weighted residual error measures and diffusion acceleration

    Get PDF
    As implemented in a new modern-Fortran code, NURBS-based isogeometric analysis (IGA) spatial discretisations and self-adaptive mesh refinement (AMR) algorithms are developed in the application to the first-order and second-order forms of the neutron transport equation (NTE). These AMR algorithms are shown to be computationally efficient and numerically accurate when compared to standard approaches. IGA methods are very competitive and offer certain unique advantages over standard finite element methods (FEM), not least of all because the numerical analysis is performed over an exact representation of the underlying geometry, which is generally available in some computer-aided design (CAD) software description. Furthermore, mesh refinement can be performed within the analysis program at run-time, without the need to revisit any ancillary mesh generator. Two error measures are described for the IGA-based AMR algorithms, both of which can be employed in conjunction with energy-dependent meshes. The first heuristically minimises any local contributions to the global discretisation error, as per some appropriate user-prescribed norm. The second employs duality arguments to minimise important local contributions to the error as measured in some quantity of interest; this is commonly known as a dual-weighted residual (DWR) error measure and it demands the solution to both the forward (primal) and the adjoint (dual) NTE. Finally, convergent and stable diffusion acceleration and generalised minimal residual (GMRes) algorithms, compatible with the aforementioned AMR algorithms, are introduced to accelerate the convergence of the within-group self-scattering sources for scattering-dominated problems for the first and second-order forms of the NTE. A variety of verification benchmark problems are analysed to demonstrate the computational performance and efficiency of these acceleration techniques.Open Acces

    Higher-Order DGFEM Transport Calculations on Polytope Meshes for Massively-Parallel Architectures

    Get PDF
    In this dissertation, we develop improvements to the discrete ordinates (S_N) neutron transport equation using a Discontinuous Galerkin Finite Element Method (DGFEM) spatial discretization on arbitrary polytope (polygonal and polyhedral) grids compatible for massively-parallel computer architectures. Polytope meshes are attractive for multiple reasons, including their use in other physics communities and their ease in handling local mesh refinement strategies. In this work, we focus on two topical areas of research. First, we discuss higher-order basis functions compatible to solve the DGFEM S_N transport equation on arbitrary polygonal meshes. Second, we assess Diffusion Synthetic Acceleration (DSA) schemes compatible with polytope grids for massively-parallel transport problems. We first utilize basis functions compatible with arbitrary polygonal grids for the DGFEM transport equation. We analyze four different basis functions that have linear completeness on polygons: the Wachspress rational functions, the PWL functions, the mean value coordinates, and the maximum entropy coordinates. We then describe the procedure to extend these polygonal linear basis functions into the quadratic serendipity space of functions. These quadratic basis functions can exactly interpolate monomial functions up to order 2. Both the linear and quadratic sets of basis functions preserve transport solutions in the thick diffusion limit. Maximum convergence rates of 2 and 3 are observed for regular transport solutions for the linear and quadratic basis functions, respectively. For problems that are limited by the regularity of the transport solution, convergence rates of 3/2 (when the solution is continuous) and 1/2 (when the solution is discontinuous) are observed. Spatial Adaptive Mesh Refinement (AMR) achieved superior convergence rates than uniform refinement, even for problems bounded by the solution regularity. We demonstrated accuracy in the AMR solutions by allowing them to reach a level where the ray effects of the angular discretization are realized. Next, we analyzed DSA schemes to accelerate both the within-group iterations as well as the thermal upscattering iterations for multigroup transport problems. Accelerating the thermal upscattering iterations is important for materials (e.g., graphite) with significant thermal energy scattering and minimal absorption. All of the acceleration schemes analyzed use a DGFEM discretization of the diffusion equation that is compatible with arbitrary polytope meshes: the Modified Interior Penalty Method (MIP). MIP uses the same DGFEM discretization as the transport equation. The MIP form is Symmetric Positive De_nite (SPD) and e_ciently solved with Preconditioned Conjugate Gradient (PCG) with Algebraic MultiGrid (AMG) preconditioning. The analysis from previous work was extended to show MIP's stability and robustness for accelerating 3D transport problems. MIP DSA preconditioning was implemented in the Parallel Deterministic Transport (PDT) code at Texas A&M University and linked with the HYPRE suite of linear solvers. Good scalability was numerically verified out to around 131K processors. The fraction of time spent performing DSA operations was small for problems with sufficient work performed in the transport sweep (O(10^3) angular directions). Finally, we have developed a novel methodology to accelerate transport problems dominated by thermal neutron upscattering. Compared to historical upscatter acceleration methods, our method is parallelizable and amenable to massively parallel transport calculations. Speedup factors of about 3-4 were observed with our new method

    Implicit High-Order Flux Reconstruction Solver for High-Speed Compressible Flows

    Full text link
    The present paper addresses the development and implementation of the first high-order Flux Reconstruction (FR) solver for high-speed flows within the open-source COOLFluiD (Computational Object-Oriented Libraries for Fluid Dynamics) platform. The resulting solver is fully implicit and able to simulate compressible flow problems governed by either the Euler or the Navier-Stokes equations in two and three dimensions. Furthermore, it can run in parallel on multiple CPU-cores and is designed to handle unstructured grids consisting of both straight and curved edged quadrilateral or hexahedral elements. While most of the implementation relies on state-of-the-art FR algorithms, an improved and more case-independent shock capturing scheme has been developed in order to tackle the first viscous hypersonic simulations using the FR method. Extensive verification of the FR solver has been performed through the use of reproducible benchmark test cases with flow speeds ranging from subsonic to hypersonic, up to Mach 17.6. The obtained results have been favorably compared to those available in literature. Furthermore, so-called super-accuracy is retrieved for certain cases when solving the Euler equations. The strengths of the FR solver in terms of computational accuracy per degree of freedom are also illustrated. Finally, the influence of the characterizing parameters of the FR method as well as the the influence of the novel shock capturing scheme on the accuracy of the developed solver is discussed

    An adaptive, hanging-node, discontinuous isogeometric analysis method for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    Get PDF
    In this paper a discontinuous, hanging-node, isogeometric analysis (IGA) method is developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation in two-dimensional space. The complexities involved in upwinding across curved element boundaries that contain hanging-nodes have been addressed to ensure that the scheme remains conservative. A robust algorithm for cycle-breaking has also been introduced in order to develop a unique sweep ordering of the elements for each discrete ordinates direction. The convergence rate of the scheme has been verified using the method of manufactured solutions (MMS) with a smooth solution. Heuristic error indicators have been used to drive an adaptive mesh refinement (AMR) algorithm to take advantage of the hanging-node discretisation. The effectiveness of this method is demonstrated for three test cases. The first is a homogeneous square in a vacuum with varying mean free path and a prescribed extraneous unit source. The second test case is a radiation shielding problem and the third is a 3×3 “supercell” featuring a burnable absorber. In the final test case, comparisons are made to the discontinuous Galerkin finite element method (DGFEM) using both straight-sided and curved quadratic finite elements

    Anisotropic Adaptivity and Subgrid Scale Modelling for the Solution of the Neutron Transport Equation with an Emphasis on Shielding Applications

    No full text
    This thesis demonstrates advanced new discretisation and adaptive meshing technologies that improve the accuracy and stability of using finite element discretisations applied to the Boltzmann transport equation (BTE). This equation describes the advective transport of neutral particles such as neutrons and photons within a domain. The BTE is difficult to solve, due to its large phase space (three dimensions of space, two of angle and one each of energy and time) and the presence of non-physical oscillations in many situations. This work explores the use of a finite element method that combines the advantages of the two schemes: the discontinuous and continuous Galerkin methods. The new discretisation uses multiscale (subgrid) finite elements that work locally within each element in the finite element mesh in addition to a global, continuous, formulation. The use of higher order functions that describe the variation of the angular flux over each element is also explored using these subgrid finite element schemes. In addition to the spatial discretisation, methods have also been developed to optimise the finite element mesh in order to reduce resulting errors in the solution over the domain, or locally in situations where there is a goal of specific interest (such as a dose in a detector region). The chapters of this thesis have been structured to be submitted individually for journal publication, and are arranged as follows. Chapter 1 introduces the reader to motivation behind the research contained within this thesis. Chapter 2 introduces the forms of the BTE that are used within this thesis. Chapter 3 provides the methods that are used, together with examples, of the validation and verification of the software that was developed as a result of this work, the transport code RADIANT. Chapter 4 introduces the inner element subgrid scale finite element discretisation of the BTE that forms the basis of the discretisations within RADIANT and explores its convergence and computational times on a set of benchmark problems. Chapter 5 develops the error metrics that are used to optimise the mesh in order to reduce the discretisation error within a finite element mesh using anisotropic adaptivity that can use elongated elements that accurately resolves computational demanding regions, such as in the presence of shocks. The work of this chapter is then extended in Chapter 6 that forms error metrics for goal based adaptivity to minimise the error in a detector response. Finally, conclusions from this thesis and suggestions for future work that may be explored are discussed in Chapter 7.Open Acces
    • …
    corecore