916 research outputs found

    RODI: Benchmarking Relational-to-Ontology Mapping Generation Quality

    Get PDF
    Accessing and utilizing enterprise or Web data that is scattered across multiple data sources is an important task for both applications and users. Ontology-based data integration, where an ontology mediates between the raw data and its consumers, is a promising approach to facilitate such scenarios. This approach crucially relies on useful mappings to relate the ontology and the data, the latter being typically stored in relational databases. A number of systems to support the construction of such mappings have recently been developed. A generic and effective benchmark for reliable and comparable evaluation of the practical utility of such systems would make an important contribution to the development of ontology-based data integration systems and their application in practice. We have proposed such a benchmark, called RODI. In this paper, we present a new version of RODI, which significantly extends our previous benchmark, and we evaluate various systems with it. RODI includes test scenarios from the domains of scientific conferences, geographical data, and oil and gas exploration. Scenarios are constituted of databases, ontologies, and queries to test expected results. Systems that compute relational-to-ontology mappings can be evaluated using RODI by checking how well they can handle various features of relational schemas and ontologies, and how well the computed mappings work for query answering. Using RODI, we conducted a comprehensive evaluation of seven systems

    Recovering Grammar Relationships for the Java Language Specification

    Get PDF
    Grammar convergence is a method that helps discovering relationships between different grammars of the same language or different language versions. The key element of the method is the operational, transformation-based representation of those relationships. Given input grammars for convergence, they are transformed until they are structurally equal. The transformations are composed from primitive operators; properties of these operators and the composed chains provide quantitative and qualitative insight into the relationships between the grammars at hand. We describe a refined method for grammar convergence, and we use it in a major study, where we recover the relationships between all the grammars that occur in the different versions of the Java Language Specification (JLS). The relationships are represented as grammar transformation chains that capture all accidental or intended differences between the JLS grammars. This method is mechanized and driven by nominal and structural differences between pairs of grammars that are subject to asymmetric, binary convergence steps. We present the underlying operator suite for grammar transformation in detail, and we illustrate the suite with many examples of transformations on the JLS grammars. We also describe the extraction effort, which was needed to make the JLS grammars amenable to automated processing. We include substantial metadata about the convergence process for the JLS so that the effort becomes reproducible and transparent

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Towards Modeling of DataWeb Applications - A Requirement\u27s Perspective

    Get PDF
    The web is more and more used as a platform for fullfledged, increasingly complex information systems, where a huge amount of change-intensive data is managed by underlying database systems. From a software engineering point of view, the development of such so called DataWeb applications requires proper modeling methods in order to ensure architectural soundness and maintainability. The goal of this paper is twofold. First, a framework of requirements, covering the design space of DataWeb modeling methods in terms of three orthogonal dimensions is suggested. Second, on the basis of this framework, eight representative modeling methods for DataWeb applications are surveyed and general shortcomings are identified pointing the way to nextgeneration modeling methods

    Fexprs as the basis of Lisp function application; or, $vau: the ultimate abstraction

    Get PDF
    Abstraction creates custom programming languages that facilitate programming for specific problem domains. It is traditionally partitioned according to a two-phase model of program evaluation, into syntactic abstraction enacted at translation time, and semantic abstraction enacted at run time. Abstractions pigeon-holed into one phase cannot interact freely with those in the other, since they are required to occur at logically distinct times. Fexprs are a Lisp device that subsumes the capabilities of syntactic abstraction, but is enacted at run-time, thus eliminating the phase barrier between abstractions. Lisps of recent decades have avoided fexprs because of semantic ill-behavedness that accompanied fexprs in the dynamically scoped Lisps of the 1960s and 70s. This dissertation contends that the severe difficulties attendant on fexprs in the past are not essential, and can be overcome by judicious coordination with other elements of language design. In particular, fexprs can form the basis for a simple, well-behaved Scheme-like language, subsuming traditional abstractions without a multi-phase model of evaluation. The thesis is supported by a new Scheme-like language called Kernel, created for this work, in which each Scheme-style procedure consists of a wrapper that induces evaluation of operands, around a fexpr that acts on the resulting arguments. This arrangement enables Kernel to use a simple direct style of selectively evaluating subexpressions, in place of most Lisps\u27 indirect quasiquotation style of selectively suppressing subexpression evaluation. The semantics of Kernel are treated through a new family of formal calculi, introduced here, called vau calculi. Vau calculi use direct subexpression-evaluation style to extend lambda calculus, eliminating a long-standing incompatibility between lambda calculus and fexprs that would otherwise trivialize their equational theories. The impure vau calculi introduce non-functional binding constructs and unconventional forms of substitution. This strategy avoids a difficulty of Felleisen\u27s lambda-v-CS calculus, which modeled impure control and state using a partially non-compatible reduction relation, and therefore only approximated the Church-Rosser and Plotkin\u27s Correspondence Theorems. The strategy here is supported by an abstract class of Regular Substitutive Reduction Systems, generalizing Klop\u27s Regular Combinatory Reduction Systems
    • …
    corecore