695 research outputs found

    System-on-chip Computing and Interconnection Architectures for Telecommunications and Signal Processing

    Get PDF
    This dissertation proposes novel architectures and design techniques targeting SoC building blocks for telecommunications and signal processing applications. Hardware implementation of Low-Density Parity-Check decoders is approached at both the algorithmic and the architecture level. Low-Density Parity-Check codes are a promising coding scheme for future communication standards due to their outstanding error correction performance. This work proposes a methodology for analyzing effects of finite precision arithmetic on error correction performance and hardware complexity. The methodology is throughout employed for co-designing the decoder. First, a low-complexity check node based on the P-output decoding principle is designed and characterized on a CMOS standard-cells library. Results demonstrate implementation loss below 0.2 dB down to BER of 10^{-8} and a saving in complexity up to 59% with respect to other works in recent literature. High-throughput and low-latency issues are addressed with modified single-phase decoding schedules. A new "memory-aware" schedule is proposed requiring down to 20% of memory with respect to the traditional two-phase flooding decoding. Additionally, throughput is doubled and logic complexity reduced of 12%. These advantages are traded-off with error correction performance, thus making the solution attractive only for long codes, as those adopted in the DVB-S2 standard. The "layered decoding" principle is extended to those codes not specifically conceived for this technique. Proposed architectures exhibit complexity savings in the order of 40% for both area and power consumption figures, while implementation loss is smaller than 0.05 dB. Most modern communication standards employ Orthogonal Frequency Division Multiplexing as part of their physical layer. The core of OFDM is the Fast Fourier Transform and its inverse in charge of symbols (de)modulation. Requirements on throughput and energy efficiency call for FFT hardware implementation, while ubiquity of FFT suggests the design of parametric, re-configurable and re-usable IP hardware macrocells. In this context, this thesis describes an FFT/IFFT core compiler particularly suited for implementation of OFDM communication systems. The tool employs an accuracy-driven configuration engine which automatically profiles the internal arithmetic and generates a core with minimum operands bit-width and thus minimum circuit complexity. The engine performs a closed-loop optimization over three different internal arithmetic models (fixed-point, block floating-point and convergent block floating-point) using the numerical accuracy budget given by the user as a reference point. The flexibility and re-usability of the proposed macrocell are illustrated through several case studies which encompass all current state-of-the-art OFDM communications standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementations results are presented for two deep sub-micron standard-cells libraries (65 and 90 nm) and commercially available FPGA devices. Compared with other FFT core compilers, the proposed environment produces macrocells with lower circuit complexity and same system level performance (throughput, transform size and numerical accuracy). The final part of this dissertation focuses on the Network-on-Chip design paradigm whose goal is building scalable communication infrastructures connecting hundreds of core. A low-complexity link architecture for mesochronous on-chip communication is discussed. The link enables skew constraint looseness in the clock tree synthesis, frequency speed-up, power consumption reduction and faster back-end turnarounds. The proposed architecture reaches a maximum clock frequency of 1 GHz on 65 nm low-leakage CMOS standard-cells library. In a complex test case with a full-blown NoC infrastructure, the link overhead is only 3% of chip area and 0.5% of leakage power consumption. Finally, a new methodology, named metacoding, is proposed. Metacoding generates correct-by-construction technology independent RTL codebases for NoC building blocks. The RTL coding phase is abstracted and modeled with an Object Oriented framework, integrated within a commercial tool for IP packaging (Synopsys CoreTools suite). Compared with traditional coding styles based on pre-processor directives, metacoding produces 65% smaller codebases and reduces the configurations to verify up to three orders of magnitude

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    FPGA design methodology for industrial control systems—a review

    Get PDF
    This paper reviews the state of the art of fieldprogrammable gate array (FPGA) design methodologies with a focus on industrial control system applications. This paper starts with an overview of FPGA technology development, followed by a presentation of design methodologies, development tools and relevant CAD environments, including the use of portable hardware description languages and system level programming/design tools. They enable a holistic functional approach with the major advantage of setting up a unique modeling and evaluation environment for complete industrial electronics systems. Three main design rules are then presented. These are algorithm refinement, modularity, and systematic search for the best compromise between the control performance and the architectural constraints. An overview of contributions and limits of FPGAs is also given, followed by a short survey of FPGA-based intelligent controllers for modern industrial systems. Finally, two complete and timely case studies are presented to illustrate the benefits of an FPGA implementation when using the proposed system modeling and design methodology. These consist of the direct torque control for induction motor drives and the control of a diesel-driven synchronous stand-alone generator with the help of fuzzy logic

    Mengenal pasti tahap pengetahuan pelajar tahun akhir Ijazah Sarjana Muda Kejuruteraan di KUiTTHO dalam bidang keusahawanan dari aspek pengurusan modal

    Get PDF
    Malaysia ialah sebuah negara membangun di dunia. Dalam proses pembangunan ini, hasrat negara untuk melahirkan bakal usahawan beijaya tidak boleh dipandang ringan. Oleh itu, pengetahuan dalam bidang keusahawanan perlu diberi perhatian dengan sewajarnya; antara aspek utama dalam keusahawanan ialah modal. Pengurusan modal yang tidak cekap menjadi punca utama kegagalan usahawan. Menyedari hakikat ini, kajian berkaitan Pengurusan Modal dijalankan ke atas 100 orang pelajar Tahun Akhir Kejuruteraan di KUiTTHO. Sampel ini dipilih kerana pelajar-pelajar ini akan menempuhi alam pekeijaan di mana mereka boleh memilih keusahawanan sebagai satu keijaya. Walau pun mereka bukanlah pelajar dari jurusan perniagaan, namun mereka mempunyai kemahiran dalam mereka cipta produk yang boleh dikomersialkan. Hasil dapatan kajian membuktikan bahawa pelajar-pelajar ini berminat dalam bidang keusahawanan namun masih kurang pengetahuan tentang pengurusan modal terutamanya dalam menentukan modal permulaan, pengurusan modal keija dan caracara menentukan pembiayaan kewangan menggunakan kaedah jualan harian. Oleh itu, satu garis panduan Pengurusan Modal dibina untuk memberi pendedahan kepada mereka

    An Open Core System-on-chip Platform

    Get PDF
    The design cycle required to produce a System-on-Chip can be reduced by providing pre-designed built-in features and functions such as configurable I/O, power and ground grids, block RAMs, timing generators and other embedded intellectual property (IP) blocks. A basic combination of such built-in features is known as a platform. The major objective of this thesis was to design and implement one such System-on-Chip platform using open IP cores targeting the TSMC-0.18 CMOS process. The integrated System-on-Chip platform, which contains approximately four million transistors, was synthesized using Synopsys - Design Compiler and placed and routed using Cadence - First Encounter, Silicon Ensemble. Design verification was done at the pre-synthesis, post-synthesis and post-layout levels using Mentor Graphics - ModelSim. Final layout was imported into Cadence - Virtuoso to perform design rule check. A tutorial was written to enable others to create derivative designs of this platform quickly

    Template-based embedded reconfigurable computing

    Get PDF
    XIV+212hlm.;24c

    Design and resource management of reconfigurable multiprocessors for data-parallel applications

    Get PDF
    FPGA (Field-Programmable Gate Array)-based custom reconfigurable computing machines have established themselves as low-cost and low-risk alternatives to ASIC (Application-Specific Integrated Circuit) implementations and general-purpose microprocessors in accelerating a wide range of computation-intensive applications. Most often they are Application Specific Programmable Circuiits (ASPCs), which are developer programmable instead of user programmable. The major disadvantages of ASPCs are minimal programmability, and significant time and energy overheads caused by required hardware reconfiguration when the problem size outnumbers the available reconfigurable resources; these problems are expected to become more serious with increases in the FPGA chip size. On the other hand, dominant high-performance computing systems, such as PC clusters and SMPs (Symmetric Multiprocessors), suffer from high communication latencies and/or scalability problems. This research introduces low-cost, user-programmable and reconfigurable MultiProcessor-on-a-Programmable-Chip (MPoPC) systems for high-performance, low-cost computing. It also proposes a relevant resource management framework that deals with performance, power consumption and energy issues. These semi-customized systems reduce significantly runtime device reconfiguration by employing userprogrammable processing elements that are reusable for different tasks in large, complex applications. For the sake of illustration, two different types of MPoPCs with hardware FPUs (floating-point units) are designed and implemented for credible performance evaluation and modeling: the coarse-grain MIMD (Multiple-Instruction, Multiple-Data) CG-MPoPC machine based on a processor IP (Intellectual Property) core and the mixed-mode (MIMD, SIMD or M-SIMD) variant-grain HERA (HEterogeneous Reconfigurable Architecture) machine. In addition to alleviating the above difficulties, MPoPCs can offer several performance and energy advantages to our data-parallel applications when compared to ASPCs; they are simpler and more scalable, and have less verification time and cost. Various common computation-intensive benchmark algorithms, such as matrix-matrix multiplication (MMM) and LU factorization, are studied and their parallel solutions are shown for the two MPoPCs. The performance is evaluated with large sparse real-world matrices primarily from power engineering. We expect even further performance gains on MPoPCs in the near future by employing ever improving FPGAs. The innovative nature of this work has the potential to guide research in this arising field of high-performance, low-cost reconfigurable computing. The largest advantage of reconfigurable logic lies in its large degree of hardware customization and reconfiguration which allows reusing the resources to match the computation and communication needs of applications. Therefore, a major effort in the presented design methodology for mixed-mode MPoPCs, like HERA, is devoted to effective resource management. A two-phase approach is applied. A mixed-mode weighted Task Flow Graph (w-TFG) is first constructed for any given application, where tasks are classified according to their most appropriate computing mode (e.g., SIMD or MIMD). At compile time, an architecture is customized and synthesized for the TFG using an Integer Linear Programming (ILP) formulation and a parameterized hardware component library. Various run-time scheduling schemes with different performanceenergy objectives are proposed. A system-level energy model for HERA, which is based on low-level implementation data and run-time statistics, is proposed to guide performance-energy trade-off decisions. A parallel power flow analysis technique based on Newton\u27s method is proposed and employed to verify the methodology

    Polarity Control at Runtime:from Circuit Concept to Device Fabrication

    Get PDF
    Semiconductor device research for digital circuit design is currently facing increasing challenges to enhance miniaturization and performance. A huge economic push and the interest in novel applications are stimulating the development of new pathways to overcome physical limitations affecting conventional CMOS technology. Here, we propose a novel Schottky barrier device concept based on electrostatic polarity control. Specifically, this device can behave as p- or n-type by simply changing an electric input bias. This device combines More-than-Moore and Beyond CMOS elements to create an efficient technology with a viable path to Very Large Scale Integration (VLSI). This thesis proposes a device/circuit/architecture co-optimization methodology, where aspects of device technology to logic circuit and system design are considered. At device level, a full CMOS compatible fabrication process is presented. In particular, devices are demonstrated using vertically stacked, top-down fabricated silicon nanowires with gate-all-around electrode geometry. Source and drain contacts are implemented using nickel silicide to provide quasi-symmetric conduction of either electrons or holes, depending on the mode of operation. Electrical measurements confirm excellent performance, showing Ion/Ioff > 10^7 and subthreshold slopes approaching the thermal limit, SS ~ 60mV/dec (~ 63mV/dec) for n(p)-type operation in the same physical device. Moreover, the shown devices behave as p-type for a polarization bias (polarity gate voltage, Vpg) of 0V, and n-type for a Vpg = 1V, confirming their compatibility with multi-level static logic circuit design. At logic gate level, two- and four-transistor logic gates are fabricated and tested. In particular, the first fully functional, two-transistor XOR logic gate is demonstrated through electrical characterization, confirming that polarity control can enable more compact logic gate design with respect to conventional CMOS. Furthermore, we show for the first time fabricated four- transistors logic gates that can be reconfigured as NAND or XOR only depending on their external connectivity. In this case, logic gates with full swing output range are experimentally demonstrated. Finally, single device and mixed-mode TCAD simulation results show that lower Vth and more optimized polarization ranges can be expected in scaled devices implementing strain or high-k technologies. At circuit and system level, a full semi-custom logic circuit design tool flow was defined and configured. Using this flow, novel logic libraries based on standard cells or regular gate fabrics were compared with standard CMOS. In this respect, results were shown in comparison to CMOS, including a 40% normalized area-delay product reduction for the analyzed standard cell libraries, and improvements of over 2Ă— in terms of normalized delay for regular Controlled Polarity (CP)-based cells in the context of Structured ASICs. These results, in turn, confirm the interest in further developing and optimizing CP devices, as promising candidates for future digital circuit technology

    Video Processing Acceleration using Reconfigurable Logic and Graphics Processors

    No full text
    A vexing question is `which architecture will prevail as the core feature of the next state of the art video processing system?' This thesis examines the substitutive and collaborative use of the two alternatives of the reconfigurable logic and graphics processor architectures. A structured approach to executing architecture comparison is presented - this includes a proposed `Three Axes of Algorithm Characterisation' scheme and a formulation of perfor- mance drivers. The approach is an appealing platform for clearly defining the problem, assumptions and results of a comparison. In this work it is used to resolve the advanta- geous factors of the graphics processor and reconfigurable logic for video processing, and the conditions determining which one is superior. The comparison results prompt the exploration of the customisable options for the graphics processor architecture. To clearly define the architectural design space, the graphics processor is first identifed as part of a wider scope of homogeneous multi-processing element (HoMPE) architectures. A novel exploration tool is described which is suited to the investigation of the customisable op- tions of HoMPE architectures. The tool adopts a systematic exploration approach and a high-level parameterisable system model, and is used to explore pre- and post-fabrication customisable options for the graphics processor. A positive result of the exploration is the proposal of a reconfigurable engine for data access (REDA) to optimise graphics processor performance for video processing-specific memory access patterns. REDA demonstrates the viability of the use of reconfigurable logic as collaborative `glue logic' in the graphics processor architecture
    • …
    corecore