54 research outputs found

    Wireless innovation for smart independent living

    Get PDF

    Intensity based interrogation of optical fibre sensors for industrial automation and intrusion detection systems

    Get PDF
    In this study, the use of optical fibre sensors for intrusion detection and industrial automation systems has been demonstrated, with a particular focus on low cost, intensity-based, interrogation techniques. The use of optical fibre sensors for intrusion detection systems to secure residential, commercial, and industrial premises against potential security breaches has been extensively reviewed in this thesis. Fibre Bragg grating (FBG) sensing is one form of optical fibre sensing that has been underutilised in applications such as in-ground, in-fence, and window and door monitoring, and addressing that opportunity has been a major goal of this thesis. Both security and industrial sensor systems must include some centralised intelligence (electronic controller) and ideally both automation and security sensor systems would be controlled and monitored by the same centralised system. Optical fibre sensor systems that could be used for either application have been designed, developed, and tested in this study, and optoelectronic interfaces for integrating these sensors with electronic controllers have been demonstrated. The versatility of FBG sensors means that they are also ideal for certain mainstream industrial applications. Two novel transducers have been developed in this work; a highly sensitive low pressure FBG diaphragm transducer and a FBG load cell transducer. Both have been designed to allow interrogation of the optical signal could occur within the housing of the individual sensors themselves. This is achieved in a simple and low cost manner that enables the output of the transducers to be easily connected to standard electronic controllers, such as programmable logic controllers. Furthermore, some of the nonlinear characteristics of FBG sensors have been explored with the aim of developing transducers that are inherently decoupled from strain and temperature interference. One of the major advantages of optical fibre sensors is their ability to be both time division and wavelength division multiplexed. The intensity-based interrogation techniques used here complement this attribute and are a major consideration when developing the transducers and optoelectronic circuits. A time division multiplexing technique, using transmit-reflect detection and incorporating a dual bus, has also been developed. This system architecture enables all the different optical fibre transducers on the network to have the same Bragg wavelength and hence the number of spare replacement transducers required is minimal. Moreover, sensors can be replaced in an online control system without disrupting the network. In addition, by analysing both the transmitted and reflected signals, problems associated with optical power fluctuations are eliminated and the intensity of the sensor signals is increased through differential amplification. Overall, the research addresses the limitations of conventional electrical sensors, such as susceptibility to corrosive damage in wet and corrosive environments, and risk of causing an explosion in hazardous environments, as well as the limitations of current stand-alone optical fibre sensor systems. This thesis supports more alert, reliable, affordable, and coordinated, control and monitoring systems in an on-line environment

    Automatic identification technology tracking weapons and ammunition for the Norwegian Armed Forces

    Get PDF
    The purpose of this study is to recommend technology and solutions that improve the accountability and accuracy of small arms and ammunition inventories in the Norwegian Armed Forces (NAF). Radio Frequency Identification (RFID) and Item Unique Identification (IUID) are described, and challenges and benefits of these two major automatic identification technologies are discussed. A case study for the NAF is conducted where processes and objectives that are important for the inventory system are presented. Based on the specific requirements in the NAF's inventory system, an analysis of four different inventory management solutions is examined. For the RFID solution, an experiment is conducted to determine whether this is a feasible solution for small arms inventory control. A recommendation is formed based on the results of this analysis. The tandem solution, which uses IUID technology at the item level, passive RFID at the box level and active RFID when items are transported, is the recommendation. This solution uses the appropriate technologies where they are best suited and offers the best results for an accurate inventory control system with low implementation costs and risks.http://archive.org/details/automaticidentif109455715Approved for public release; distribution is unlimited

    EXPERIMENTAL INVESTIGATION TO INFORM OPTIMAL CONFIGURATIONS FOR DYNAMIC NEAR-FIELD PASSIVE UHF RFID SYSTEMS

    Get PDF
    RFID has been characterized as a “disruptive technology” that has the potential to revolutionize numerous key sectors. A key advantage of passive RFID applications is the ability to wirelessly transmit automatic identification and related information using very little power. This paper presents an experimental investigation to inform the optimal configuration for programming passive ultra-high frequency (UHF) RFID media in dynamic applications. Dynamic programming solutions must be designed around the tag’s functionality, the physical programming configuration and environment. In this investigation, we present a methodology to determine an optimal configuration to maximize the systems programming efficiency for dynamic applications

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    UTILIZING AUTOMATIC IDENTIFICATION TRACKING SYSTEMS TO COMPILE OPERATIONAL FIELD AND STRUCTURE DATA

    Get PDF
    The Maryland State Highway Administration (SHA) and its Office of Materials Technology (OMT) is responsible for ensuring the materials used on its roadway system are properly designed, produced, and built to the approved standards. Each technology subdivision is responsible for the quality assurance of the materials used in transportation facility construction. The management of these materials relies on a series of intensive human processes involving sample collection and delivery. As the materials travel throughout the OMT, associated material information is manually recorded into a localized network database and the Material Management System (MMS) separately. The current large amount of human involvement necessary in the material clearance process can be streamlined with the integration of automatic identification technology (AIT). This study utilizes past implementations of AIT into civil engineering and construction applications to provide the SHA with AIT system hardware recommendations, software development considerations, estimated investment costs, and return on investment

    Supporting improvised games for young people in public spaces

    Get PDF
    PhD ThesisResearchers looking at technologically mediated play and games have explored how games can be taken away from the computer screen and played in outdoor spaces. This has resulted in new pervasive games that benefit from the opportunities for rich social and physical interaction in new mobile contexts. However, we have only just begun to explore these opportunities; game designs should bring young people together in these new contexts in play that is appropriate, meaningful, and can be enjoyed on their own mobile devices. The research in this thesis explores how game designers and interaction designers can design more playful mobile games for young people that can be played together in public spaces. This work draws upon a research through design approach that has been informed by the researcher’s own practice of game design and working co-creatively with custodians of public spaces. The contributions are based on the analysis of empirical data collected from two case studies in a community library and a country house, while additionally drawing upon three further game designs made in collaborations with other partners. This work contributes a game design framework that provides an approach, a step by step method, guidelines and a software library for making mobile games with more open, spontaneous, and improvised styles of play. The mobile games are designed with and based on a simplistic game system that presents digital playing cards to provide the game structure and bound play, while the mobile device is also used to configure the play space and sustain play. The intention is to provide designers with a practical and evidence-based approach to designing digital games for new mobile contexts. This work will appeal to game designers who are motivated by an interest in play and playfulness that will resonate with our childhood memories of play.UK AHRC KE Hub for the Creative Economy (ref: AH/J005150/1 Creative Exchange

    Utilisation of embedded information devices to support a sustainable approach to product life-cycle management

    Get PDF
    The huge landfills from solid waste generated by the massive utilisation of different products from domestic sources are badly affecting the environment. About 70% of the solid municipal waste, two thirds of which comprises of household waste, is dumped as landflll all over the world. For efficient product lifecycle management via upgrade, maintenance, reuse, refurbishment, and reclamation of components etc., storage of product related information throughout its lifecycle is indispensable. Efficient use of information technology integrated with product design can enable products to manage themselves in a semiautomatic and intelligent manner. It means that products themselves should contain informationĂş that what to do with them when they are of no use. More advanced products may locate themselves and communicate with their recyclers through internet or some other communication technology. In this regard, different types of technologies have been investigated. These technologies are broadly classified as passive embedded information devices and active embedded information devices. Methods of automatic identification in combination with information technology can act as passive Embedded Information Devices (EID) to make products intelligent enough in order to manage associated information throughout their life cycles. Barcodes, Radio Frequency Identification tags, and a new technology called i-button technology were investigated as possible candidates for passive EIDs. The ibutton technology from the perspective of product lifecycle management is presented for the very first time in the literature. Experiments demonstrated that RFID and i-button technologies have potential to store not only the static but dynamic data up to some extent, such as small maintenance logs. As passive EIDs are unable to store the sensory data and detailed maintenance logs regarding a product, therefore, in addition to these demonstrators for passive EIDs, an advanced active EID demonstrator for lifecycle management of products with high functional complexity is also presented. Initially, the idea is presented as smart EID system that r~cords the sensory data of a refrigerator compressor and stores the detailed maintenance logs into the product itself. However, this idea is extended as intelligent EID that is implemented on a gearbox in order to predict the gearbox lifetime under an accelerated life test. This involves developmen,t of a novel on-chip life prediction algorithm to predict the gearbox lifetime under accelerated life testing scenario. The algorithm involves a combination of artificial neural networks and an appropriate reliability distribution. Results of accelerated life testing, simulation for the choice of appropriate reliability distribution and the life prediction algorithm are presented. Bi-directional communication software that is developed in order to retrieve lifecycle data from the intelligent EID and to keep intelligent EID updated is also explained. Overall, embedded information devices can be proposed as a good solution to support a sustainable approach to lifecycle management.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Development of sensors and non-destructive techniques to determine the performance of coatings in construction

    Get PDF
    The primary objective of this work was to examine and develop techniques for monitoring the degradation of Organically Coated Steel (OCS) in-situ. This included the detection of changes associated with the weathering to both the organic coating and metallic substrate. Initially, a review of current promising techniques was carried out however many were found to be unsuitable for this application and the adaptation of current techniques and the development of new techniques was considered. A brief concept investigation, based on initial testing and considerations, was used to determine a number of sensing techniques to examine. These included embedded, Resonant Frequency Identification (RFID), Magnetic Flux Leakage (MFL) and dielectric sensing. Each of these techniques were assessed for the application, prototyped, and tested against a range of samples to determine the accuracy and sensitivity of degradation detection provided. A range of poorly and highly durable coated samples were used in conjunction with accelerated weathering testing for this aim. Track based electronic printed sensors were presented as both a cut edge corrosion tracking and coating capacitance measurement method. While suffering somewhat from electrical paint compatibility issues both concepts showed merit in initial trials however the capacitive sensor ultimately proved insufficiently responsive to coating changes. The embedded, progressive failure-based, cut edge corrosion sensor was produced and tested in modern coating systems with moderate success. Novel applications of RFID and MLF techniques were considered and proved capable of detecting large changes in substrate condition due to significant corrosion. However, there was a lack of sufficient sensitivity when considering early-stage corrosion of durable modern OCS products. Finally, it was shown that a chipless antenna could be designed and optimised for novelly monitoring the changes to the dielectric properties of a paint layer due to degradation. However, ultimately this test, due to equipment requirements, lent itself more to lab testing than in-situ. Due to some of these limitations a different approach was considered in which the environmental factors influencing degradation were examined with the aim of relating these to performance across a building. It was observed that a combination of high humidity and the build-up of aggressive natural deposits contributed to high degradation rates in sheltered regions, such as building eaves, where microclimates were created. The build-up of deposits and their effect was presented as a key degradation accelerant during in-use service. A unique numerical simulation approach was developed to predict the natural washing, via rain impact and characteristics of the building analysed. This approach showed promise for determining areas unlikely to be naturally washed, and therefore subjected to a degradation accelerating, build-up of deposits. Given these understandings coated wetness sensors were considered as a realistic live-monitoring device capable of determining deposit build up and ultimately OCS lifetime
    • …
    corecore