477 research outputs found

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Secure migration of virtual SDN topologies

    Get PDF
    International audienceWith the emergence of Software Defined Networks (SDN), new virtualization techniques have appeared (e.g., FlowVi-sor [14]). Traditional hypervision has attracted a lot of attention with respect to resource sharing and multi-tenancy. Cloud providers have usually a solid knowledge on how to manage computing , memory and storage resources, but often lack the ability to properly manage network resources. Thanks to OpenFlow, a widespread SDN southbound interface protocol, virtualizing the network infrastructure has become possible. However, network virtualization also comes with its own security issues ([5], [6]). In this paper, we focus on the security aspects related to the migration of virtual networks. After providing a brief overview of the technological scope of our work, we review the state of the art of the migration of virtual resources. Finally, we conclude with our current results and the prospective outcomes we expect to obtain

    Cyber-Storms Come from Clouds: Security of Cloud Computing in the IoT Era

    Get PDF
    The Internet of Things (IoT) is rapidly changing our society to a world where every "thing" is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of Cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds

    Architectures and Algorithms for Content Delivery in Future Networks

    Get PDF
    Traditional Content Delivery Networks (CDNs) built with traditional Internet technology are less and less able to cope with today’s tremendous content growth. Enhancing infrastructures with storage and computation capabilities may help to remedy the situation. Information-Centric Networks (ICNs), a proposed future Internet technology, unlike the current Internet, decouple information from its sources and provide in-network storage. However, content delivery over in-network storage-enabled networks still faces significant issues, such as the stability and accuracy of estimated bitrate when using Dynamic Adaptive Streaming (DASH). Still Implementing new infrastructures with in-network storage can lead to other challenges. For instance, the extensive deployment of such networks will require a significant upgrade of the installed IP infrastructure. Furthermore, network slicing enables services and applications with very different characteristics to co-exist on the same network infrastructure. Another challenge is that traditional architectures cannot meet future expectations for streaming in terms of latency and network load when it comes to content, such as 360° videos and immersive services. In-Network Computing (INC), also known as Computing in the Network (COIN), allows the computation tasks to be distributed across the network instead of being computed on servers to guarantee performance. INC is expected to provide lower latency, lower network traffic, and higher throughput. Implementing infrastructures with in-network computing will help fulfill specific requirements for streaming 360° video streaming in the future. Therefore, the delivery of 360° video and immersive services can benefit from INC. This thesis elaborates and addresses the key architectural and algorithmic research challenges related to content delivery in future networks. To tackle the first challenge, we propose algorithms for solving the inaccuracy of rate estimation for future CDNs implementation with in-network storage (a key feature of future networks). An algorithm for implementing in-network storage in IP settings for CDNs is proposed for the second challenge. Finally, for the third challenge, we propose an architecture for provisioning INC-enabled slices for 360° video streaming in next-generation networks. We considered a P4-enabled Software-Defined network (SDN) as the physical infrastructure and significantly reduced latency and traffic load for video streaming

    Cyber-storms come from clouds:Security of cloud computing in the IoT era

    Get PDF
    The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds

    The Politics of Exhaustion: Immigration Control in the British-French Border Zone

    Get PDF
    Within a climate of growing anti-immigration and populist forces gaining traction across Europe, and in response to the increased number of prospective asylum seekers arriving in Europe, recent years have seen the continued hardening of borders and a disconcerting evolution of new forms of immigration control measures utilised by states. Based on extensive field research carried out amongst displaced people in Europe in 2016-2019, this article highlights the way in which individuals in northern France are finding themselves trapped in a violent border zone, unable to move forward whilst having no obvious alternative way out of their predicament. The article seeks to illustrate the violent dynamics inherent in the immigration control measures in this border zone, characterised by both direct physical violence as well as banalised and structural forms of violence, including state neglect through the denial of services and care. The author suggests that the raft of violent measures and micro practices authorities resort to in the French-British border zone could be understood as constituting one of the latest tools for European border control and obstruction of the access to asylum procedures; a Politics of Exhaustion

    Efficient methods for trace analysis parallelization

    Get PDF
    Tracing provides a low-impact, high-resolution way to observe the execution of a system. As the amount of parallelism in traced systems increases, so does the data generated by the trace. Most trace analysis tools work in a single thread, which hinders their performance as the scale of data increases. In this paper, we explore parallelization as an approach to speedup system trace analysis. We propose a solution which uses the inherent aspects of the CTF trace format to create balanced and parallelizable workloads. Our solution takes into account key factors of parallelization, such as good load balancing, low synchronization overhead and an efficient resolution of data dependencies. We also propose an algorithm to detect and resolve data dependencies during trace analysis, with minimal locking and synchronization. Using this approach, we implement three different trace analysis programs: event counting, CPU usage analysis and I/O usage analysis, to assess the scalability in terms of parallel efficiency. The parallel implementations achieve parallel efficiency above 56% with 32 cores, which translates to a speedup of 18 times the serial speed, when running the parallel trace analyses and using trace data stored on consumer-grade solid state storage devices. We also show the scalability and potential of our approach by measuring the effect of future improvements to trace decoding on parallel efficiency

    Reviews

    Get PDF
    • …
    corecore