302 research outputs found

    Spatial Sign Correlation

    Get PDF
    A new robust correlation estimator based on the spatial sign covariance matrix (SSCM) is proposed. We derive its asymptotic distribution and influence function at elliptical distributions. Finite sample and robustness properties are studied and compared to other robust correlation estimators by means of numerical simulations.Comment: 20 pages, 7 figures, 2 table

    A robust partial least squares method with applications

    Get PDF
    Partial least squares regression (PLS) is a linear regression technique developed to relate many regressors to one or several response variables. Robust methods are introduced to reduce or remove the effect of outlying data points. In this paper we show that if the sample covariance matrix is properly robustified further robustification of the linear regression steps of the PLS algorithm becomes unnecessary. The robust estimate of the covariance matrix is computed by searching for outliers in univariate projections of the data on a combination of random directions (Stahel-Donoho) and specific directions obtained by maximizing and minimizing the kurtosis coefficient of the projected data, as proposed by Peña and Prieto (2006). It is shown that this procedure is fast to apply and provides better results than other procedures proposed in the literature. Its performance is illustrated by Monte Carlo and by an example, where the algorithm is able to show features of the data which were undetected by previous methods

    Depth weighted scatter estimators

    Full text link
    General depth weighted scatter estimators are introduced and investigated. For general depth functions, we find out that these affine equivariant scatter estimators are Fisher consistent and unbiased for a wide range of multivariate distributions, and show that the sample scatter estimators are strong and \sqrtn-consistent and asymptotically normal, and the influence functions of the estimators exist and are bounded in general. We then concentrate on a specific case of the general depth weighted scatter estimators, the projection depth weighted scatter estimators, which include as a special case the well-known Stahel-Donoho scatter estimator whose limiting distribution has long been open until this paper. Large sample behavior, including consistency and asymptotic normality, and efficiency and finite sample behavior, including breakdown point and relative efficiency of the sample projection depth weighted scatter estimators, are thoroughly investigated. The influence function and the maximum bias of the projection depth weighted scatter estimators are derived and examined. Unlike typical high-breakdown competitors, the projection depth weighted scatter estimators can integrate high breakdown point and high efficiency while enjoying a bounded-influence function and a moderate maximum bias curve. Comparisons with leading estimators on asymptotic relative efficiency and gross error sensitivity reveal that the projection depth weighted scatter estimators behave very well overall and, consequently, represent very favorable choices of affine equivariant multivariate scatter estimators.Comment: Published at http://dx.doi.org/10.1214/009053604000000922 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    An Object-Oriented Framework for Robust Multivariate Analysis

    Get PDF
    Taking advantage of the S4 class system of the programming environment R, which facilitates the creation and maintenance of reusable and modular components, an object-oriented framework for robust multivariate analysis was developed. The framework resides in the packages robustbase and rrcov and includes an almost complete set of algorithms for computing robust multivariate location and scatter, various robust methods for principal component analysis as well as robust linear and quadratic discriminant analysis. The design of these methods follows common patterns which we call statistical design patterns in analogy to the design patterns widely used in software engineering. The application of the framework to data analysis as well as possible extensions by the development of new methods is demonstrated on examples which themselves are part of the package rrcov.

    A robust partial least squares method with applications

    Get PDF
    Partial least squares regression (PLS) is a linear regression technique developed to relate many regressors to one or several response variables. Robust methods are introduced to reduce or remove the effect of outlying data points. In this paper we show that if the sample covariance matrix is properly robustified further robustification of the linear regression steps of the PLS algorithm becomes unnecessary. The robust estimate of the covariance matrix is computed by searching for outliers in univariate projections of the data on a combination of random directions (Stahel-Donoho) and specific directions obtained by maximizing and minimizing the kurtosis coefficient of the projected data, as proposed by Peña and Prieto (2006). It is shown that this procedure is fast to apply and provides better results than other procedures proposed in the literature. Its performance is illustrated by Monte Carlo and by an example, where the algorithm is able to show features of the data which were undetected by previous methods.

    Robust Estimators are Hard to Compute

    Get PDF
    In modern statistics, the robust estimation of parameters of a regression hyperplane is a central problem. Robustness means that the estimation is not or only slightly affected by outliers in the data. In this paper, it is shown that the following robust estimators are hard to compute: LMS, LQS, LTS, LTA, MCD, MVE, Constrained M estimator, Projection Depth (PD) and Stahel-Donoho. In addition, a data set is presented such that the ltsReg-procedure of R has probability less than 0.0001 of finding a correct answer. Furthermore, it is described, how to design new robust estimators. --Computational statistics,complexity theory,robust statistics,algorithms,search heuristics
    • 

    corecore