2,174 research outputs found

    Energy Management for a User Interactive Smart Community: A Stackelberg Game Approach

    Full text link
    This paper studies a three party energy management problem in a user interactive smart community that consists of a large number of residential units (RUs) with distributed energy resources (DERs), a shared facility controller (SFC) and the main grid. A Stackelberg game is formulated to benefit both the SFC and RUs, in terms of incurred cost and achieved utility respectively, from their energy trading with each other and the grid. The properties of the game are studied and it is shown that there exists a unique Stackelberg equilibrium (SE). A novel algorithm is proposed that can be implemented in a distributed fashion by both RUs and the SFC to reach the SE. The convergence of the algorithm is also proven, and shown to always reach the SE. Numerical examples are used to assess the properties and effectiveness of the proposed scheme.Comment: 6 pages, 4 figure

    Characterizing Strategic Cascades on Networks

    Full text link
    Transmission of disease, spread of information and rumors, adoption of new products, and many other network phenomena can be fruitfully modeled as cascading processes, where actions chosen by nodes influence the subsequent behavior of neighbors in the network graph. Current literature on cascades tends to assume nodes choose myopically based on the state of choices already taken by other nodes. We examine the possibility of strategic choice, where agents representing nodes anticipate the choices of others who have not yet decided, and take into account their own influence on such choices. Our study employs the framework of Chierichetti et al. [2012], who (under assumption of myopic node behavior) investigate the scheduling of node decisions to promote cascades of product adoptions preferred by the scheduler. We show that when nodes behave strategically, outcomes can be extremely different. We exhibit cases where in the strategic setting 100% of agents adopt, but in the myopic setting only an arbitrarily small epsilon % do. Conversely, we present cases where in the strategic setting 0% of agents adopt, but in the myopic setting (100-epsilon)% do, for any constant epsilon > 0. Additionally, we prove some properties of cascade processes with strategic agents, both in general and for particular classes of graphs.Comment: To appear in EC 201

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac
    • …
    corecore