2,185 research outputs found

    Stackelberg Network Pricing Games

    Get PDF
    We study a multi-player one-round game termed Stackelberg Network Pricing Game, in which a leader can set prices for a subset of mm priceable edges in a graph. The other edges have a fixed cost. Based on the leader's decision one or more followers optimize a polynomial-time solvable combinatorial minimization problem and choose a minimum cost solution satisfying their requirements based on the fixed costs and the leader's prices. The leader receives as revenue the total amount of prices paid by the followers for priceable edges in their solutions, and the problem is to find revenue maximizing prices. Our model extends several known pricing problems, including single-minded and unit-demand pricing, as well as Stackelberg pricing for certain follower problems like shortest path or minimum spanning tree. Our first main result is a tight analysis of a single-price algorithm for the single follower game, which provides a (1+ϵ)logm(1+\epsilon) \log m-approximation for any ϵ>0\epsilon >0. This can be extended to provide a (1+ϵ)(logk+logm)(1+\epsilon)(\log k + \log m)-approximation for the general problem and kk followers. The latter result is essentially best possible, as the problem is shown to be hard to approximate within \mathcal{O(\log^\epsilon k + \log^\epsilon m). If followers have demands, the single-price algorithm provides a (1+ϵ)m2(1+\epsilon)m^2-approximation, and the problem is hard to approximate within \mathcal{O(m^\epsilon) for some ϵ>0\epsilon >0. Our second main result is a polynomial time algorithm for revenue maximization in the special case of Stackelberg bipartite vertex cover, which is based on non-trivial max-flow and LP-duality techniques. Our results can be extended to provide constant-factor approximations for any constant number of followers

    Price-Based Resource Allocation for Spectrum-Sharing Femtocell Networks: A Stackelberg Game Approach

    Full text link
    This paper investigates the price-based resource allocation strategies for the uplink transmission of a spectrum-sharing femtocell network, in which a central macrocell is underlaid with distributed femtocells, all operating over the same frequency band as the macrocell. Assuming that the macrocell base station (MBS) protects itself by pricing the interference from the femtocell users, a Stackelberg game is formulated to study the joint utility maximization of the macrocell and the femtocells subject to a maximum tolerable interference power constraint at the MBS. Especially, two practical femtocell channel models: sparsely deployed scenario for rural areas and densely deployed scenario for urban areas, are investigated. For each scenario, two pricing schemes: uniform pricing and non-uniform pricing, are proposed. Then, the Stackelberg equilibriums for these proposed games are studied, and an effective distributed interference price bargaining algorithm with guaranteed convergence is proposed for the uniform-pricing case. Finally, numerical examples are presented to verify the proposed studies. It is shown that the proposed algorithms are effective in resource allocation and macrocell protection requiring minimal network overhead for spectrum-sharing-based two-tier femtocell networks.Comment: 27 pages, 7 figures, Submitted to JSA

    Stackelberg Network Pricing is Hard to Approximate

    Full text link
    In the Stackelberg Network Pricing problem, one has to assign tariffs to a certain subset of the arcs of a given transportation network. The aim is to maximize the amount paid by the user of the network, knowing that the user will take a shortest st-path once the tariffs are fixed. Roch, Savard, and Marcotte (Networks, Vol. 46(1), 57-67, 2005) proved that this problem is NP-hard, and gave an O(log m)-approximation algorithm, where m denote the number of arcs to be priced. In this note, we show that the problem is also APX-hard

    Introducing Hierarchy in Energy Games

    Full text link
    In this work we introduce hierarchy in wireless networks that can be modeled by a decentralized multiple access channel and for which energy-efficiency is the main performance index. In these networks users are free to choose their power control strategy to selfishly maximize their energy-efficiency. Specifically, we introduce hierarchy in two different ways: 1. Assuming single-user decoding at the receiver, we investigate a Stackelberg formulation of the game where one user is the leader whereas the other users are assumed to be able to react to the leader's decisions; 2. Assuming neither leader nor followers among the users, we introduce hierarchy by assuming successive interference cancellation at the receiver. It is shown that introducing a certain degree of hierarchy in non-cooperative power control games not only improves the individual energy efficiency of all the users but can also be a way of insuring the existence of a non-saturated equilibrium and reaching a desired trade-off between the global network performance at the equilibrium and the requested amount of signaling. In this respect, the way of measuring the global performance of an energy-efficient network is shown to be a critical issue.Comment: Accepted for publication in IEEE Trans. on Wireless Communication

    Different Policy Objectives of the Road Pricing Problem – a Game Theory Approach

    Get PDF
    Using game theory we investigate a new approach to formulate and solve optimal tolls with a focus on different policy objectives of the road authority. The aim is to gain more insight into determining optimal tolls as well as into the behavior of users after tolls have been imposed on the network. The problem of determining optimal tolls is stated and defined using utility maximization theory, including elastic demand on the travelers’ side and different objectives for the road authority. Game theory notions are adopted regarding different games and players, rules and outcomes of the games played between travelers on the one hand and the road authority on the other. Different game concepts (Cournot, Stackelberg and monopoly game) are mathematically formulated and the relationship between players, their payoff functions and rules of the games are defined for very simplistic cases. The games are solved for different scenarios and different objectives for the road authority, using the Nash equilibrium concept. Using the Stackelberg game concept as being most realistic for road pricing, a few experiments are presented illustrating the optimal toll design problem subject to different pricing policies considering different objectives of the road authority. Results show different outcomes both in terms of optimal tolls as well as in payoffs for travelers. There exist multiple optimal solutions and objective function may have a non- continuous shape. The main contribution is the two-level separation between of the users from the road authority in terms of their objectives and influences.
    corecore