388 research outputs found

    A Review: Circuit Theory of Microstrip Antennas for Dual-, Multi-, and Ultra-Widebands

    Get PDF
    In this chapter, a review has been presented on dual-band, multiband, and ultra-wideband (UWB). This review has been classified according to antenna feeding and loading of antennas using slots and notch and coplanar structure. Thereafter a comparison of dual-band, multiband, and ultra-wideband antenna has been presented. The basic geometry of patch antenna has been present along with its equivalent circuit diagram. It has been observed that patch antenna geometry for ultra-wideband is difficult to achieve with normal structure. Ultra-wideband antennas are achieved with two or more techniques; mostly UWB antennas are achieved from coplaner structures

    2009 Index IEEE Antennas and Wireless Propagation Letters Vol. 8

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    2008 Index IEEE Transactions on Control Systems Technology Vol. 16

    Get PDF
    This index covers all technical items - papers, correspondence, reviews, etc. - that appeared in this periodical during the year, and items from previous years that were commented upon or corrected in this year. Departments and other items may also be covered if they have been judged to have archival value. The Author Index contains the primary entry for each item, listed under the first author\u27s name. The primary entry includes the coauthors\u27 names, the title of the paper or other item, and its location, specified by the publication abbreviation, year, month, and inclusive pagination. The Subject Index contains entries describing the item under all appropriate subject headings, plus the first author\u27s name, the publication abbreviation, month, and year, and inclusive pages. Note that the item title is found only under the primary entry in the Author Index

    Wideband P-Shaped Dielectric Resonator Antenna

    Get PDF
    A novel P-shaped dielectric resonator antenna (DRA) is presented and investigated for wideband wireless application. By using P-shaped resonator, a wideband impedance bandwidth of 80% from 3.5 to 8.2 GHz is achieved. The antenna covers all of wireless systems like C-band, 5.2, 5.5 & 5.8 GHz-WLAN & WiMax. The proposed antenna has a low profile and the thickness of the resonator is only 5.12 mm, which is 0.06-0.14 free space wavelength. A parametric study is presented. The proposed DRA is built and the characteristics of the antenna are measured. Very good agreement between numerical and measured results is obtained

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    CPW-Fed Microstrip Patch Antenna for Millimeter Wave Applications

    Get PDF
    The antenna elements have been consuming more power and inoperative area with high operational frequency. Therefore, an advanced antenna element design is necessary to cross over the above faults. In this research work, the CPW-Fed microstrip patch antenna is designed using EHF range for millimeter-wave applications. CPW-fed and combinations of DGS-CPW-fed microstrip patch antennas are novel methods, these designs are enhancing many characteristics of microwave circuits, such as narrow bandwidth, cross-polarization, low gain, etc. The researchers are facing many issues in this research area, therefore Fed-CPW design has been taken as a challenging issue. Investigators are working on wideband antennas, as well as patch antennas that can be used for both single- and dual-band applications. In addition to multiband applications, DGS, CPW-Fed Slot antennas are loaded with filters, these enhancements are providing waveguides and amplification tuning. The proposed research deals with a CPW-Fed Microstrip Patch satellite antenna, which is specially modeled to operate at various high-frequency values as well as Extremely High Frequency (EHF) range. A T-Shaped Microstrip patch antenna, which is dimensioned at 11.4x2.5x1.6 mm3 has been placed on Rogers R04003 substrate. The proposed antenna has CPW-Fed with ground dimensions which are considered as 5.9mm*8mm & feed dimensions as 3.8mm*9mm. Due to CPW-feed, the proposed antenna has achieved huge bandwidth i.e 13GHz. Hence the proposed antenna design is compact and suitable at higher frequencies. Simulation results approve that it is a good antenna model. The performance measures like return loss, gain, and VSWR has been improved compared to earlier models. Moreover, this CPW-fed microstrip patch antenna approach is most useful for 5G applications and simulation results are outperforms with designed frameworks. The proposed antenna resonates from 24GHz to 37.6GHz, with good impedance matching at |S11|<=-10dB. The obtained VSWR is in the range of 1 and 2. The gain at resonant frequencies is ranged from 4 to 6 dB. The proposed antenna is useful to deploy in 5G applications as it is resonating in millimeter-wave frequencies. The following model is very useful for 5G applications and provides resonant frequencies 4 to 6 dB. The impedance matching is also improved by 15% compared to earlier models. The following experiment is designed on the HFSS software tool and CPW-Fed functionality is verified

    CPW-Fed Microstrip Patch Antenna for Millimeter Wave Applications

    Get PDF
    The antenna elements have been consuming more power and inoperative area with high operational frequency. Therefore, an advanced antenna element design is necessary to cross over the above faults. In this research work, the CPW-Fed microstrip patch antenna is designed using EHF range for millimeter-wave applications. CPW-fed and combinations of DGS-CPW-fed microstrip patch antennas are novel methods, these designs are enhancing many characteristics of microwave circuits, such as narrow bandwidth, cross-polarization, low gain, etc. The researchers are facing many issues in this research area, therefore Fed-CPW design has been taken as a challenging issue. Investigators are working on wideband antennas, as well as patch antennas that can be used for both single- and dual-band applications. In addition to multiband applications, DGS, CPW-Fed Slot antennas are loaded with filters, these enhancements are providing waveguides and amplification tuning. The proposed research deals with a CPW-Fed Microstrip Patch satellite antenna, which is specially modeled to operate at various high-frequency values as well as Extremely High Frequency (EHF) range. A T-Shaped Microstrip patch antenna, which is dimensioned at 11.4x2.5x1.6 mm3 has been placed on Rogers R04003 substrate. The proposed antenna has CPW-Fed with ground dimensions which are considered as 5.9mm*8mm & feed dimensions as 3.8mm*9mm. Due to CPW-feed, the proposed antenna has achieved huge bandwidth i.e 13GHz. Hence the proposed antenna design is compact and suitable at higher frequencies. Simulation results approve that it is a good antenna model. The performance measures like return loss, gain, and VSWR has been improved compared to earlier models. Moreover, this CPW-fed microstrip patch antenna approach is most useful for 5G applications and simulation results are outperforms with designed frameworks. The proposed antenna resonates from 24GHz to 37.6GHz, with good impedance matching at |S11|<=-10dB. The obtained VSWR is in the range of 1 and 2. The gain at resonant frequencies is ranged from 4 to 6 dB. The proposed antenna is useful to deploy in 5G applications as it is resonating in millimeter-wave frequencies. The following model is very useful for 5G applications and provides resonant frequencies 4 to 6 dB. The impedance matching is also improved by 15% compared to earlier models. The following experiment is designed on the HFSS software tool and CPW-Fed functionality is verified

    Printed Wide Slot Ultra-Wideband Antenna

    Get PDF

    Recent Trends in Printed Ultra-Wideband (UWB) Antennas

    Get PDF

    Compact ultra-wideband dielectric resonator antennas

    Get PDF
    UWB communication systems were newly regenerated when the Federal Communications Commission (FCC) defined the 3.1-10.6 GHz unlicensed band for UWB applications. Based on an investigation in designing UWB antennas, researchers have encountered more difficulties compared to a narrow band antenna. UWBantennas should have extremely wide impedance bandwidth while preserving high radiation efficiency with compact size. In some cases, a band-notched function should have been created to avoid electromagnetic interference between nearby existing systems and UWB systems. In this research, various promising UWB Dielectric Resonator Antennas (DRAs) have been demonstrated to overcome several challenges. The impedance bandwidth of the UWB DRAs has been improved for more than 110% by using some techniques such as connecting a strip to the ground plane and modifying structure of Dielectric Resonator (DR). The efficiency issue of UWB antennas is overcome by implementing DR as a resonator element which is excited by various shape structures feed lines to achieve more than 90% efficiency. The electromagnetic interferences between UWB systems and nearby existing systems in the frequency bands of 3.22-4.06 GHz, 4.84-5.96 GHz and 5.71-6.32 GHz are eliminated by using a stub connected to the hollow centre of feed line, an inverted-T shape parasitic strip near DR and modified metallic sheet underneath the DR, respectively. Compared with UWB monopole antennas, UWB DRAs obviate the problem of radiation pattern by utilizing dielectric resonator characteristics. In parallel, the broadside radiation pattern is obtained by implementing various shapes of microstrip feed line at a proper location to excite the DRA that provides symmetry radiation patterns with a consistent stability across the desired bandwidth
    corecore