9,238 research outputs found

    Stack Filter Classifiers

    Full text link

    Face Attribute Prediction Using Off-the-Shelf CNN Features

    Full text link
    Predicting attributes from face images in the wild is a challenging computer vision problem. To automatically describe face attributes from face containing images, traditionally one needs to cascade three technical blocks --- face localization, facial descriptor construction, and attribute classification --- in a pipeline. As a typical classification problem, face attribute prediction has been addressed using deep learning. Current state-of-the-art performance was achieved by using two cascaded Convolutional Neural Networks (CNNs), which were specifically trained to learn face localization and attribute description. In this paper, we experiment with an alternative way of employing the power of deep representations from CNNs. Combining with conventional face localization techniques, we use off-the-shelf architectures trained for face recognition to build facial descriptors. Recognizing that the describable face attributes are diverse, our face descriptors are constructed from different levels of the CNNs for different attributes to best facilitate face attribute prediction. Experiments on two large datasets, LFWA and CelebA, show that our approach is entirely comparable to the state-of-the-art. Our findings not only demonstrate an efficient face attribute prediction approach, but also raise an important question: how to leverage the power of off-the-shelf CNN representations for novel tasks.Comment: In proceeding of 2016 International Conference on Biometrics (ICB

    Deep Boosting: Layered Feature Mining for General Image Classification

    Full text link
    Constructing effective representations is a critical but challenging problem in multimedia understanding. The traditional handcraft features often rely on domain knowledge, limiting the performances of exiting methods. This paper discusses a novel computational architecture for general image feature mining, which assembles the primitive filters (i.e. Gabor wavelets) into compositional features in a layer-wise manner. In each layer, we produce a number of base classifiers (i.e. regression stumps) associated with the generated features, and discover informative compositions by using the boosting algorithm. The output compositional features of each layer are treated as the base components to build up the next layer. Our framework is able to generate expressive image representations while inducing very discriminate functions for image classification. The experiments are conducted on several public datasets, and we demonstrate superior performances over state-of-the-art approaches.Comment: 6 pages, 4 figures, ICME 201
    • …
    corecore