3,367 research outputs found

    A Survey of Adaptive Resonance Theory Neural Network Models for Engineering Applications

    Full text link
    This survey samples from the ever-growing family of adaptive resonance theory (ART) neural network models used to perform the three primary machine learning modalities, namely, unsupervised, supervised and reinforcement learning. It comprises a representative list from classic to modern ART models, thereby painting a general picture of the architectures developed by researchers over the past 30 years. The learning dynamics of these ART models are briefly described, and their distinctive characteristics such as code representation, long-term memory and corresponding geometric interpretation are discussed. Useful engineering properties of ART (speed, configurability, explainability, parallelization and hardware implementation) are examined along with current challenges. Finally, a compilation of online software libraries is provided. It is expected that this overview will be helpful to new and seasoned ART researchers

    Fast and accurate trajectory tracking control of an autonomous surface vehicle with unmodeled dynamics and disturbances

    Get PDF
    In this paper, fast and accurate trajectory tracking control of an autonomous surface vehicle (ASV) with complex unknowns including unmodeled dynamics, uncertainties and/or unknown disturbances is addressed within a proposed homogeneity-based finite-time control (HFC) framework. Major contributions are as follows: (1) In the absence of external disturbances, a nominal HFC framework is established to achieve exact trajectory tracking control of an ASV, whereby global finitetime stability is ensured by combining homogeneous analysis and Lyapunov approach; (2) Within the HFC scheme, a finite-time disturbance observer (FDO) is further nested to rapidly and accurately reject complex disturbances, and thereby contributing to an FDO-based HFC (FDO-HFC) scheme which can realize exactness of trajectory tracking and disturbance observation; (3) Aiming to exactly deal with complicated unknowns including unmodeled dynamics and/or disturbances, a finite-time unknown observer (FUO) is deployed as a patch for the nominal HFC framework, and eventually results in an FUO-based HFC (FUOHFC) scheme which guarantees that accurate trajectory tracking can be achieved for an ASV under harsh environments. Simulation studies and comprehensive comparisons conducted on a benchmark ship demonstrate the effectiveness and superiority of the proposed HFC schemes

    Adaptive Resonance Theory: Self-Organizing Networks for Stable Learning, Recognition, and Prediction

    Full text link
    Adaptive Resonance Theory (ART) is a neural theory of human and primate information processing and of adaptive pattern recognition and prediction for technology. Biological applications to attentive learning of visual recognition categories by inferotemporal cortex and hippocampal system, medial temporal amnesia, corticogeniculate synchronization, auditory streaming, speech recognition, and eye movement control are noted. ARTMAP systems for technology integrate neural networks, fuzzy logic, and expert production systems to carry out both unsupervised and supervised learning. Fast and slow learning are both stable response to large non stationary databases. Match tracking search conjointly maximizes learned compression while minimizing predictive error. Spatial and temporal evidence accumulation improve accuracy in 3-D object recognition. Other applications are noted.Office of Naval Research (N00014-95-I-0657, N00014-95-1-0409, N00014-92-J-1309, N00014-92-J4015); National Science Foundation (IRI-94-1659

    Classifying intelligence in machines : a taxonomy of intelligent control

    Get PDF
    The quest to create machines that can solve problems as humans do leads us to intelligent control. This field encompasses control systems that can adapt to changes and learn to improve their actions—traits typically associated with human intelligence. In this work we seek to determine how intelligent these classes of control systems are by quantifying their level of adaptability and learning. First we describe the stages of development towards intelligent control and present a definition based on literature. Based on the key elements of this definition, we propose a novel taxonomy of intelligent control methods, which assesses the extent to which they handle uncertainties in three areas: the environment, the controller, and the goals. This taxonomy is applicable to a variety of robotic and other autonomous systems, which we demonstrate through several examples of intelligent control methods and their classifications. Looking at the spread of classifications based on this taxonomy can help researchers identify where control systems can be made more intelligent

    Backpropagating constraints-based trajectory tracking control of a quadrotor with constrained actuator dynamics and complex unknowns

    Get PDF
    In this paper, a backpropagating constraints-based trajectory tracking control (BCTTC) scheme is addressed for trajectory tracking of a quadrotor with complex unknowns and cascade constraints arising from constrained actuator dynamics, including saturations and dead zones. The entire quadrotor system including actuator dynamics is decomposed into five cascade subsystems connected by intermediate saturated nonlinearities. By virtue of the cascade structure, backpropagating constraints (BCs) on intermediate signals are derived from constrained actuator dynamics suffering from nonreversible rotations and nonnegative squares of rotors, and decouple subsystems with saturated connections. Combining with sliding-mode errors, BC-based virtual controls are individually designed by addressing underactuation and cascade constraints. In order to remove smoothness requirements on intermediate controls, first-order filters are employed, and thereby contributing to backstepping-like subcontrollers synthesizing in a recursive manner. Moreover, universal adaptive compensators are exclusively devised to dominate intermediate tracking residuals and complex unknowns. Eventually, the closed-loop BCTTC system stability can be ensured by the Lyapunov synthesis, and trajectory tracking errors can be made arbitrarily small. Simulation studies demonstrate the effectiveness and superiority of the proposed BCTTC scheme for a quadrotor with complex constrains and unknowns

    Adaptive dynamic programming with eligibility traces and complexity reduction of high-dimensional systems

    Get PDF
    This dissertation investigates the application of a variety of computational intelligence techniques, particularly clustering and adaptive dynamic programming (ADP) designs especially heuristic dynamic programming (HDP) and dual heuristic programming (DHP). Moreover, a one-step temporal-difference (TD(0)) and n-step TD (TD(λ)) with their gradients are utilized as learning algorithms to train and online-adapt the families of ADP. The dissertation is organized into seven papers. The first paper demonstrates the robustness of model order reduction (MOR) for simulating complex dynamical systems. Agglomerative hierarchical clustering based on performance evaluation is introduced for MOR. This method computes the reduced order denominator of the transfer function by clustering system poles in a hierarchical dendrogram. Several numerical examples of reducing techniques are taken from the literature to compare with our work. In the second paper, a HDP is combined with the Dyna algorithm for path planning. The third paper uses DHP with an eligibility trace parameter (λ) to track a reference trajectory under uncertainties for a nonholonomic mobile robot by using a first-order Sugeno fuzzy neural network structure for the critic and actor networks. In the fourth and fifth papers, a stability analysis for a model-free action-dependent HDP(λ) is demonstrated with batch- and online-implementation learning, respectively. The sixth work combines two different gradient prediction levels of critic networks. In this work, we provide a convergence proofs. The seventh paper develops a two-hybrid recurrent fuzzy neural network structures for both critic and actor networks. They use a novel n-step gradient temporal-difference (gradient of TD(λ)) of an advanced ADP algorithm called value-gradient learning (VGL(λ)), and convergence proofs are given. Furthermore, the seventh paper is the first to combine the single network adaptive critic with VGL(λ). --Abstract, page iv

    Intelligent flight control systems

    Get PDF
    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms

    ADAPTIVE WAVELETS SLIDING MODE CONTROL FOR A CLASS OF SECOND ORDER UNDERACTUATED MECHANICAL SYSTEMS

    Get PDF
    The control of underactuated mechanical systems (UMS) remains an attracting field where researchers can develop their control algorithms. To this date, various linear and nonlinear control techniques using classical and intelligent methods have been published in literature. In this work, an adaptive controller using sliding mode control (SMC) and wavelets network (WN) is proposed for a class of second-order UMS with two degrees of freedom (DOF).This adaptive control strategy takes advantage of both sliding mode control and wavelet properties. In the main result, we consider the case of un-modeled dynamics of the above-mentioned UMS, and we introduce a wavelets network to design an adaptive controller based on the SMC. The update algorithms are directly extracted by using the gradient descent method and conditions are then settled to achieve the required convergence performance.The efficacy of the proposed adaptive approach is demonstrated through an application to the pendubot

    Diagnostic and adaptive redundant robotic planning and control

    Get PDF
    Neural networks and fuzzy logic are combined into a hierarchical structure capable of planning, diagnosis, and control for a redundant, nonlinear robotic system in a real world scenario. Throughout this work levels of this overall approach are demonstrated for a redundant robot and hand combination as it is commanded to approach, grasp, and successfully manipulate objects for a wheelchair-bound user in a crowded, unpredictable environment. Four levels of hierarchy are developed and demonstrated, from the lowest level upward: diagnostic individual motor control, optimal redundant joint allocation for trajectory planning, grasp planning with tip and slip control, and high level task planning for multiple arms and manipulated objects. Given the expectations of the user and of the constantly changing nature of processes, the robot hierarchy learns from its experiences in order to more efficiently execute the next related task, and allocate this knowledge to the appropriate levels of planning and control. The above approaches are then extended to automotive and space applications
    corecore