152,181 research outputs found

    A Fully Integrated High-Temperature, High-Voltage, BCD-on-SOI Voltage Regulator

    Get PDF
    Developments in automotive (particularly hybrid electric vehicles), aerospace, and energy production industries over the recent years have led to expanding research interest in integrated circuit (IC) design toward high-temperature applications. A high-voltage, high-temperature SOI process allows for circuit design to expand into these extreme environment applications. Nearly all electronic devices require a reliable supply voltage capable of operating under various input voltages and load currents. These input voltages and load currents can be either DC or time-varying signals. In this work, a stable supply voltage for embedded circuit functions is generated on chip via a voltage regulator circuit producing a stable 5-V output voltage. Although applications of this voltage regulator are not limited to gate driver circuits, this regulator was developed to meet the demands of a gate driver IC. The voltage regulator must provide reliable output voltage over an input range from 10 V to 30 V, a temperature range of −50 ºC to 200 ºC, and output loads from 0 mA to 200 mA. Additionally, low power stand-by operation is provided to help reduce heat generation and thus lower operating junction temperature. This regulator is based on the LM723 Zener reference voltage regulator which allows stable performance over temperature (provided proper design of the temperature compensation scheme). This circuit topology and the SOI silicon process allow for reliable operation under all application demands. The designed voltage regulator has been successfully tested from −50 ºC to 200 ºC while demonstrating an output voltage variation of less than 25 mV under the full range of input voltage. Line regulation tests from 10 V to 35 V show a 3.7-ppm/V supply sensitivity. With the use of a high-temperature ceramic output capacitor, a 5-nsec edge, 0 to 220 mA, 1-µsec pulse width load current induced only a 55 mV drop in regulator output voltage. In the targeted application, load current pulse widths will be much shorter, thereby improving the load transient performance. Full temperature and input voltage range tests reveal the no-load supply current draw is within 330 µA while still providing an excess of 200 mA of load current upon demand

    An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Get PDF
    This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C

    Power management of islanded Self-Excited Induction Generator reinforced by energy storage systems

    Get PDF
    Self-Excited Induction Generators (SEIGs), e.g., Small-Scale Embedded wind generation, are increasingly used in electricity distribution networks. The operational stability of stand-alone SEIG is constrained by the local load conditions: stability can be achieved by maintaining the load’s active and reactive power at optimal values. Changes in power demand are dependent on customers’ requirements, and any deviation from the pre-calculated optimum setting will affect a machine’s operating voltage and frequency. This paper presents an investigation of the operation of the SEIG in islanding mode of operation under different load conditions, with the aid of batteries as an energy storage source. In this research a current-controlled voltage-source converter is proposed to regulate the power exchange between a direct current (DC) energy storage source and an alternating current (AC) grid, the converter’s controller is driven by any variation between machine capability and load demand. In order to prolong the system stability when the battery reaches its operation constraints, it is recommended that an ancillary generator and a dummy local load be embedded in the system. The results show the robustness and operability of the proposed system in the islanding mode of the SEIG under different load conditions

    Numerical simulation and design of semiconductor quantum dot-based lasers and amplifiers

    Get PDF
    Numerical simulation and design of semiconductor quantum dot-based lasers and amplifier

    A biophysical model explains the spontaneous bursting behavior in the developing retina

    Full text link
    During early development, waves of activity propagate across the retina and play a key role in the proper wiring of the early visual system. During the stage II these waves are triggered by a transient network of neurons, called Starburst Amacrine Cells (SACs), showing a bursting activity which disappears upon further maturation. While several models have attempted to reproduce retinal waves, none of them is able to mimic the rhythmic autonomous bursting of individual SACs and reveal how these cells change their intrinsic properties during development. Here, we introduce a mathematical model, grounded on biophysics, which enables us to reproduce the bursting activity of SACs and to propose a plausible, generic and robust, mechanism that generates it. The core parameters controlling repetitive firing are fast depolarizing VV-gated calcium channels and hyperpolarizing VV-gated potassium channels. The quiescent phase of bursting is controlled by a slow after hyperpolarization (sAHP), mediated by calcium-dependent potassium channels. Based on a bifurcation analysis we show how biophysical parameters, regulating calcium and potassium activity, control the spontaneously occurring fast oscillatory activity followed by long refractory periods in individual SACs. We make a testable experimental prediction on the role of voltage-dependent potassium channels on the excitability properties of SACs and on the evolution of this excitability along development. We also propose an explanation on how SACs can exhibit a large variability in their bursting periods, as observed experimentally within a SACs network as well as across different species, yet based on a simple, unique, mechanism. As we discuss, these observations at the cellular level have a deep impact on the retinal waves description.Comment: 25 pages, 13 figures, submitte

    Infrared imaging investigation of temperature fluctuation and spatial distribution for a large laminated lithium ion power battery

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The present study investigates the thermal behaviors of a naturally cooled NCM-type LIB (LiNi1−x−yCoxMnyO2 as cathode) from an experimental and systematic approach. The temperature distribution was acquired for different discharge rates and Depth of Discharge (DOD) by the infrared imaging (IR) technology. Two new factors, the temperature variance ( ) and local overheating index (LOH index), were proposed to assess the temperature fluctuation and distribution. Results showed that the heat generation rate was higher on the cathode side than that on the anode side due to the different resistivity of current collectors. For a low-power discharge, the eventual stable high-temperature zone occurred in the center of the battery, while with a high-power discharge, the upper part of the battery was the high temperature region from the very beginning of discharge. It was found that the temperature variance ( ) and local overheating index (LOH index) were capable of holistically exhibiting the temperature non-uniformity both on numerical fluctuation and spatial distribution with varying discharge rates and DOD. With increasing the discharge rate and DOD, temperature distribution showed an increasingly non-uniform trend, especially at the initial and final stage of high-power discharge, the heat accumulation and concentration area increased rapidly
    corecore