1,007 research outputs found

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Full text link
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an in-viscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space-and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Full text link
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an in-viscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space-and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations

    Immersed Boundary Smooth Extension: A high-order method for solving PDE on arbitrary smooth domains using Fourier spectral methods

    Full text link
    The Immersed Boundary method is a simple, efficient, and robust numerical scheme for solving PDE in general domains, yet it only achieves first-order spatial accuracy near embedded boundaries. In this paper, we introduce a new high-order numerical method which we call the Immersed Boundary Smooth Extension (IBSE) method. The IBSE method achieves high-order accuracy by smoothly extending the unknown solution of the PDE from a given smooth domain to a larger computational domain, enabling the use of simple Cartesian-grid discretizations (e.g. Fourier spectral methods). The method preserves much of the flexibility and robustness of the original IB method. In particular, it requires minimal geometric information to describe the boundary and relies only on convolution with regularized delta-functions to communicate information between the computational grid and the boundary. We present a fast algorithm for solving elliptic equations, which forms the basis for simple, high-order implicit-time methods for parabolic PDE and implicit-explicit methods for related nonlinear PDE. We apply the IBSE method to solve the Poisson, heat, Burgers', and Fitzhugh-Nagumo equations, and demonstrate fourth-order pointwise convergence for Dirichlet problems and third-order pointwise convergence for Neumann problems

    Effects of discrete energy and helicity conservation in numerical simulations of helical turbulence

    Get PDF
    Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an inviscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space- and time-discretization methods typically corrupt this prop- erty, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time- advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analy- sis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations.Postprint (published version

    Spectro-consistent discretization of Navier-Stokes: a challenge to RANS and LES

    Get PDF
    In this paper, we discuss the results of a fourth-order, spectro-consistent discretization of the incompressible Navier-Stokes equations. In such an approach the discretization of a (skew-)symmetric operator is given by a (skew-)symmetric matrix. Numerical experiments with spectro-consistent discretizations and traditional methods are presented for a one-dimensional convection-diffusion equation. LES and RANS are challenged by giving a number of examples for which a fourth-order, spectro-consistent discretization of the Navier-Stokes equations without any turbulence model yields better (or at least equally good) results as large-eddy simulations or RANS computations, whereas the grids are comparable. The examples are taken from a number of recent workshops on complex turbulent flows.

    Construction of Modern Robust Nodal Discontinuous Galerkin Spectral Element Methods for the Compressible Navier-Stokes Equations

    Full text link
    Discontinuous Galerkin (DG) methods have a long history in computational physics and engineering to approximate solutions of partial differential equations due to their high-order accuracy and geometric flexibility. However, DG is not perfect and there remain some issues. Concerning robustness, DG has undergone an extensive transformation over the past seven years into its modern form that provides statements on solution boundedness for linear and nonlinear problems. This chapter takes a constructive approach to introduce a modern incarnation of the DG spectral element method for the compressible Navier-Stokes equations in a three-dimensional curvilinear context. The groundwork of the numerical scheme comes from classic principles of spectral methods including polynomial approximations and Gauss-type quadratures. We identify aliasing as one underlying cause of the robustness issues for classical DG spectral methods. Removing said aliasing errors requires a particular differentiation matrix and careful discretization of the advective flux terms in the governing equations.Comment: 85 pages, 2 figures, book chapte
    corecore