23,105 research outputs found

    Adaptive shared control system

    Get PDF

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Modeling of physical human–robot interaction : admittance controllers applied to intelligent assist devices with large payload

    Get PDF
    Enhancement of human performance using an intelligent assist device is becoming more common. In order to achieve effective augmentation of human capacity, cooperation between human and robot must be safe and very intuitive. Ensuring such collaboration remains a challenge, especially when admittance control is used. This paper addresses the issues of transparency and human perception coming from vibration in admittance control schemes. Simulation results obtained with our suggested improved model using an admittance controller are presented, then four models using transfer functions are discussed in detail and evaluated as a means of simulating physical human–robot interaction using admittance control. The simulation and experimental results are then compared in order to assess the validity and limitations of the proposed models in the case of a four-degree-of-freedom intelligent assist device designed for large payload

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    Human-activity-centered measurement system:challenges from laboratory to the real environment in assistive gait wearable robotics

    Get PDF
    Assistive gait wearable robots (AGWR) have shown a great advancement in developing intelligent devices to assist human in their activities of daily living (ADLs). The rapid technological advancement in sensory technology, actuators, materials and computational intelligence has sped up this development process towards more practical and smart AGWR. However, most assistive gait wearable robots are still confined to be controlled, assessed indoor and within laboratory environments, limiting any potential to provide a real assistance and rehabilitation required to humans in the real environments. The gait assessment parameters play an important role not only in evaluating the patient progress and assistive device performance but also in controlling smart self-adaptable AGWR in real-time. The self-adaptable wearable robots must interactively conform to the changing environments and between users to provide optimal functionality and comfort. This paper discusses the performance parameters, such as comfortability, safety, adaptability, and energy consumption, which are required for the development of an intelligent AGWR for outdoor environments. The challenges to measuring the parameters using current systems for data collection and analysis using vision capture and wearable sensors are presented and discussed

    Improvement on work measurement at Pau Mira Frozen Food Industry

    Get PDF
    The record of highest sales for one day is 20000 buns and the manpower for Pau Mira factory is only 18 persons. Special feature for Pau Mira is about the full of stuffing and many choices of flavor. Hot selling bun flavor is red bean bun and chocolate bun. For example, Bun Mira contains many flavors such as red bean bun, coconut, yam, chocolate, chicken, durian and it is enables to be food supplies to West Malaysia, not only limited to area Pagoh. The workflow for Pau Mira factory includes ingredient selection, dough kneading, and bun formation, fermentation, steaming, cooling and packaging. Table 5.1 shows the process of making pau started from dough kneading until the packaging process

    A cable-suspended intelligent crane assist device for the intuitive manipulation of large payloads

    Get PDF
    This paper presents a cable-suspended crane system to assist operators in moving and lifting large payloads. The main objective of this work is to develop a simple and reliable system to help operators in industry to be more productive while preventing injuries. The system is based on the development of a precise and reliable cable angle sensor and a complete dynamic model of the system. Adaptive horizontal and vertical controllers designed for direct physical human-robot interaction are then proposed. Different techniques are then proposed to estimate the payload acceleration in order to increase the controller performances. Finally, experiments performed on a full-scale industrial system are presented

    Active stability observer using artificial neural network for intuitive physical human–robot interaction

    Get PDF
    Physical human-robot interaction may present an obstacle to transparency and operations’ intuitiveness. This barrier could occur due to the vibrations caused by a stiff environment interacting with the robotic mechanisms. In this regard, this paper aims to deal with the aforementioned issues while using an observer and an adaptive gain controller. The adaptation of the gain loop should be performed in all circumstances in order to maintain operators’ safety and operations’ intuitiveness. Hence, two approaches for detecting and then reducing vibrations will be introduced in this study as follows: 1) a statistical analysis of a sensor signal (force and velocity) and 2) a multilayer perceptron artificial neural network capable of compensating the first approach for ensuring vibrations identification in real time. Simulations and experimental results are then conducted and compared in order to evaluate the validity of the suggested approaches in minimizing vibrations
    • …
    corecore