24,676 research outputs found

    Self-Organized Synchronization and Voltage Stability in Networks of Synchronous Machines

    Full text link
    The integration of renewable energy sources in the course of the energy transition is accompanied by grid decentralization and fluctuating power feed-in characteristics. This raises new challenges for power system stability and design. We intend to investigate power system stability from the viewpoint of self-organized synchronization aspects. In this approach, the power grid is represented by a network of synchronous machines. We supplement the classical Kuramoto-like network model, which assumes constant voltages, with dynamical voltage equations, and thus obtain an extended version, that incorporates the coupled categories voltage stability and rotor angle synchronization. We compare disturbance scenarios in small systems simulated on the basis of both classical and extended model and we discuss resultant implications and possible applications to complex modern power grids.Comment: 9 pages, 9 figure

    Dynamics of Oscillators Coupled by a Medium with Adaptive Impact

    Get PDF
    In this article we study the dynamics of coupled oscillators. We use mechanical metronomes that are placed over a rigid base. The base moves by a motor in a one-dimensional direction and the movements of the base follow some functions of the phases of the metronomes (in other words, it is controlled to move according to a provided function). Because of the motor and the feedback, the phases of the metronomes affect the movements of the base while on the other hand, when the base moves, it affects the phases of the metronomes in return. For a simple function for the base movement (such as y=γx[rθ1+(1−r)θ2]y = \gamma_{x} [r \theta_1 + (1 - r) \theta_2] in which yy is the velocity of the base, γx\gamma_{x} is a multiplier, rr is a proportion and θ1\theta_1 and θ2\theta_2 are phases of the metronomes), we show the effects on the dynamics of the oscillators. Then we study how this function changes in time when its parameters adapt by a feedback. By numerical simulations and experimental tests, we show that the dynamic of the set of oscillators and the base tends to evolve towards a certain region. This region is close to a transition in dynamics of the oscillators; where more frequencies start to appear in the frequency spectra of the phases of the metronomes

    Quantum correlations and synchronization measures

    Full text link
    The phenomenon of spontaneous synchronization is universal and only recently advances have been made in the quantum domain. Being synchronization a kind of temporal correlation among systems, it is interesting to understand its connection with other measures of quantum correlations. We review here what is known in the field, putting emphasis on measures and indicators of synchronization which have been proposed in the literature, and comparing their validity for different dynamical systems, highlighting when they give similar insights and when they seem to fail.Comment: book chapter, 18 pages, 7 figures, Fanchini F., Soares Pinto D., Adesso G. (eds) Lectures on General Quantum Correlations and their Applications. Quantum Science and Technology. Springer (2017

    Topological Complexity of Frictional Interfaces: Friction Networks

    Get PDF
    Through research conducted in this study, a network approach to the correlation patterns of void spaces in rough fractures (crack type II) was developed. We characterized friction networks with several networks characteristics. The correlation among network properties with the fracture permeability is the result of friction networks. The revealed hubs in the complex aperture networks confirmed the importance of highly correlated groups to conduct the highlighted features of the dynamical aperture field. We found that there is a universal power law between the nodes' degree and motifs frequency (for triangles it reads T(k)\proptok{\beta} ({\beta} \approx2\pm0.3)). The investigation of localization effects on eigenvectors shows a remarkable difference in parallel and perpendicular aperture patches. Furthermore, we estimate the rate of stored energy in asperities so that we found that the rate of radiated energy is higher in parallel friction networks than it is in transverse directions. The final part of our research highlights 4 point sub-graph distribution and its correlation with fluid flow. For shear rupture, we observed a similar trend in sub-graph distribution, resulting from parallel and transversal aperture profiles (a superfamily phenomenon)

    Synchronization with partial state coupling on SO(n)

    Full text link
    This paper studies autonomous synchronization of k agents whose states evolve on SO(n), but which are only coupled through the action of their states on one "reference vector" in Rn for each link. Thus each link conveys only partial state information at each time, and to reach synchronization agents must combine this information over time or throughout the network. A natural gradient coupling law for synchronization is proposed. Extensive convergence analysis of the coupled agents is provided, both for fixed and time-varying reference vectors. The case of SO(3) with fixed reference vectors is discussed in more detail. For comparison, we also treat the equivalent setting in Rn, i.e. with states in Rn and connected agents comparing scalar product of their states with a reference vector.Comment: to be submitted to SIAM Journal on Control and Optimizatio
    • …
    corecore