11,246 research outputs found

    Nonlinear metastability for a parabolic system of reaction-diffusion equations

    Full text link
    We consider a system of reaction-diffusion equations in a bounded interval of the real line, with emphasis on the metastable dynamics, whereby the time-dependent solution approaches its steady state in an asymptotically exponentially long time interval as the viscosity coefficient ε>0\varepsilon>0 goes to zero. To rigorous describe such behavior, we analyze the dynamics of solutions in a neighborhood of a one-parameter family of approximate steady states, and we derive an ODE for the position of the internal interfaces.Comment: This paper has been withdrawn by the author due to an error in Theorem 1.1. Please refer to the paper "Slow dynamics in reaction-diffusion systems

    Resonantly Forced Inhomogeneous Reaction-Diffusion Systems

    Full text link
    The dynamics of spatiotemporal patterns in oscillatory reaction-diffusion systems subject to periodic forcing with a spatially random forcing amplitude field are investigated. Quenched disorder is studied using the resonantly forced complex Ginzburg-Landau equation in the 3:1 resonance regime. Front roughening and spontaneous nucleation of target patterns are observed and characterized. Time dependent spatially varying forcing fields are studied in the 3:1 forced FitzHugh-Nagumo system. The periodic variation of the spatially random forcing amplitude breaks the symmetry among the three quasi-homogeneous states of the system, making the three types of fronts separating phases inequivalent. The resulting inequality in the front velocities leads to the formation of ``compound fronts'' with velocities lying between those of the individual component fronts, and ``pulses'' which are analogous structures arising from the combination of three fronts. Spiral wave dynamics is studied in systems with compound fronts.Comment: 14 pages, 19 figures, to be published in CHAOS. This replacement has some minor changes in layout for purposes of neatnes

    Spatiotemporal pattern formation in a three-variable CO oxidation reaction model

    Full text link
    The spatiotemporal pattern formation is studied in the catalytic carbon monoxide oxidation reaction that takes into account the diffusion processes over the Pt(110) surface, which may contain structurally different areas. These areas are formed during CO-induced transition from a reconstructed phase with 1×21\times2 geometry of the overlayer to a bulk-like (1×11\times1) phase with square atomic arrangement. Despite the CO oxidation reaction being non-autocatalytic, we have shown that the analytic conditions of the existence of the Turing and the Hopf bifurcations can be satisfied in such systems. Thus, the system may lose its stability in two ways --- either through the Hopf bifurcation leading to the formation of temporal patterns in the system or through the Turing bifurcation leading to the formation of regular spatial patterns. At a simultaneous implementation of both scenarios, spatiotemporal patterns for CO and oxygen coverages are obtained in the system.Comment: 11 pages, 6 figures, 1 tabl

    Frozen spatial chaos induced by boundaries

    Get PDF
    We show that rather simple but non-trivial boundary conditions could induce the appearance of spatial chaos (that is stationary, stable, but spatially disordered configurations) in extended dynamical systems with very simple dynamics. We exemplify the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional undulated domain. Concepts from the theory of dynamical systems, and a transverse-single-mode approximation are used to describe the spatially chaotic structures.Comment: 9 pages, 6 figures, submitted for publication; for related work visit http://www.imedea.uib.es/~victo

    Spatial organization in cyclic Lotka-Volterra systems

    Full text link
    We study the evolution of a system of NN interacting species which mimics the dynamics of a cyclic food chain. On a one-dimensional lattice with N<5 species, spatial inhomogeneities develop spontaneously in initially homogeneous systems. The arising spatial patterns form a mosaic of single-species domains with algebraically growing size, (t)tα\ell(t)\sim t^\alpha, where α=3/4\alpha=3/4 (1/2) and 1/3 for N=3 with sequential (parallel) dynamics and N=4, respectively. The domain distribution also exhibits a self-similar spatial structure which is characterized by an additional length scale, L(t)tβ{\cal L}(t)\sim t^\beta, with β=1\beta=1 and 2/3 for N=3 and 4, respectively. For N5N\geq 5, the system quickly reaches a frozen state with non interacting neighboring species. We investigate the time distribution of the number of mutations of a site using scaling arguments as well as an exact solution for N=3. Some possible extensions of the system are analyzed.Comment: 18 pages, 10 figures, revtex, also available from http://arnold.uchicago.edu/~ebn
    corecore