152,450 research outputs found

    The Hierarchy of Stable Distributions and Operators to Trade Off Stability and Performance

    Get PDF
    Recent work addressing model reliability and generalization has resulted in a variety of methods that seek to proactively address differences between the training and unknown target environments. While most methods achieve this by finding distributions that will be invariant across environments, we will show they do not necessarily find the same distributions which has implications for performance. In this paper we unify existing work on prediction using stable distributions by relating environmental shifts to edges in the graph underlying a prediction problem, and characterize stable distributions as those which effectively remove these edges. We then quantify the effect of edge deletion on performance in the linear case and corroborate the findings in a simulated and real data experiment

    Power Modelling for Heterogeneous Cloud-Edge Data Centers

    Get PDF
    Existing power modelling research focuses not on the method used for developing models but rather on the model itself. This paper aims to develop a method for deploying power models on emerging processors that will be used, for example, in cloud-edge data centers. Our research first develops a hardware counter selection method that appropriately selects counters most correlated to power on ARM and Intel processors. Then, we propose a two stage power model that works across multiple architectures. The key results are: (i) the automated hardware performance counter selection method achieves comparable selection to the manual selection methods reported in literature, and (ii) the two stage power model can predict dynamic power more accurately on both ARM and Intel processors when compared to classic power models.Comment: 10 pages,10 figures,conferenc

    Prediction of Neighbor-Dependent Microbial Interactions From Limited Population Data

    Get PDF
    Modulation of interspecies interactions by the presence of neighbor species is a key ecological factor that governs dynamics and function of microbial communities, yet the development of theoretical frameworks explicit for understanding context-dependent interactions are still nascent. In a recent study, we proposed a novel rule-based inference method termed the Minimal Interspecies Interaction Adjustment (MIIA) that predicts the reorganization of interaction networks in response to the addition of new species such that the modulation in interaction coefficients caused by additional members is minimal. While the theoretical basis of MIIA was established through the previous work by assuming the full availability of species abundance data in axenic, binary, and complex communities, its extension to actual microbial ecology can be highly constrained in cases that species have not been cultured axenically (e.g., due to their inability to grow in the absence of specific partnerships) because binary interaction coefficients – basic parameters required for implementing the MIIA – are inestimable without axenic and binary population data. Thus, here we present an alternative formulation based on the following two central ideas. First, in the case where only data from axenic cultures are unavailable, we remove axenic populations from governing equations through appropriate scaling. This allows us to predict neighbor-dependent interactions in a relative sense (i.e., fractional change of interactions between with versus without neighbors). Second, in the case where both axenic and binary populations are missing, we parameterize binary interaction coefficients to determine their values through a sensitivity analysis. Through the case study of two microbial communities with distinct characteristics and complexity (i.e., a three-member community where all members can grow independently, and a four-member community that contains member species whose growth is dependent on other species), we demonstrated that despite data limitation, the proposed new formulation was able to successfully predict interspecies interactions that are consistent with experimentally derived results. Therefore, this technical advancement enhances our ability to predict context-dependent interspecies interactions in a broad range of microbial systems without being limited to specific growth conditions as a pre-requisite
    • …
    corecore