3,103 research outputs found

    Adaptive Compliance Shaping with Human Impedance Estimation

    Full text link
    Human impedance parameters play an integral role in the dynamics of strength amplification exoskeletons. Many methods are used to estimate the stiffness of human muscles, but few are used to improve the performance of strength amplification controllers for these devices. We propose a compliance shaping amplification controller incorporating an accurate online human stiffness estimation from surface electromyography (sEMG) sensors and stretch sensors connected to the forearm and upper arm of the human. These sensor values along with exoskeleton position and velocity are used to train a random forest regression model that accurately predicts a person's stiffness despite varying movement, relaxation, and muscle co-contraction. Our model's accuracy is verified using experimental test data and the model is implemented into the compliance shaping controller. Ultimately we show that the online estimation of stiffness can improve the bandwidth and amplification of the controller while remaining robustly stable.Comment: 8 pages, 9 figures, Accepted for publication at the 2020 American Control Conference. Copyright IEEE 202

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices

    A Comprehensive Analysis of Balance, Symmetry, and Center of Mass in the Gait Cycle of Transfemoral Amputees

    Get PDF
    The purpose of this thesis is to create a framework that assists in the transfemoral prosthesis fitting process by calculating balance and symmetry to quantify patient comfort with an understanding of bipedal locomotion and human anatomy. Three different software applications were used to compare (1) the body position during gait cycle, (2) the natural and amputee anatomies, (3) the natural and prosthetic legs, and (4) the equilibrium and torque movements of the hip, knee, and ankle joints. Models were created in Maya for analysis in Solidworks and MEL code evaluation with MatLab. The MatLab code tested combinations of joint degrees and identified stability leg rotations. Additionally, the center of mass (COM) analysis demonstrated that the 3rd combination of materials for the prosthetic leg proved to be closest in COM position to the natural leg (COMNL ratio = 0.6241) with a COM ratio = 0.5972. COM determination assists in establishing symmetry in the prosthesis and amputee relationship. The (COM) alteration contributors were established as the stump length, prosthesis weight, and body position and anatomy

    An Attempt to Improve Stance Mechanics of Trans-Tibial Amputee Gait by the Design of a Modular Ankle Joint Prosthetic

    Get PDF
    Background: A-priori research shows that trans-tibial (TT) amputees display poor gait parameters when walking with low-cost ankle-foot prosthetics (here referred to as baseline AFP’s). This has drastic implications for the amputee populations in the developing world specifically, as they have limited access to advanced prosthetic technologies. Low-cost AFP’s are unable to adequately replicate natural stance mechanics, and reliance on these devices results in increased energy expenditure, osteoarthritis and lower-limb joint deterioration. Methodology: This project details the design of a novel ankle joint prosthetic (AJP) that serves as an attachment to baseline AFP’s, with the aim of facilitating better stance mechanics via the restoration of ankle joint mechanisms. The work is presented in three core sections: Part 1 explains the rationale as to why adequately replicating natural stance mechanics is an appropriate need; Part 2 presents the design of the modular low-cost AJP that utilises only simple mechanical elements; and Part 3 presents the experimental quantification of the impact the AJP has on stance mechanics of a baseline AFP (Otto Bock 1D10) in a simulation of the TT amputee walking gait cycle, via the use of three able-bodied participants and a pseudo-prosthesis. Results: The results indicate that the AJP significantly improves the stance mechanics of the baseline AFP. During forefoot rollover a stable joint moment and an increase in joint range of motion (RoM) was observed, yielding a decrease in ankle stiffness. During initial weight acceptance of early stance, an increase in joint RoM displays the restoration of controlled plantarflexion, which indicates an improved transition from heelstrike to footflat. This is a critical mechanism that facilitates stability control during weight acceptance, and the results suggest that the designed AJP is performing better in this regard than its closest functional competitor. However, equipment errors limited the ability to accurately report on ankle stiffness of this phase. Conclusions: Overall the final conclusions are that the designed AJP improves rollover shapes of the baseline AFP, eases phase transitions, and facilitates stability control and forward tibial progression. In combination with the low cost price (±50 USD), its ease of assembly and modular design, the AJP is thus a preferable option for low-income amputees in developing countries. Finally, there is significant evidence of functional and mechanical reliability, and therefore testing of the device can progress to a clinical study involving amputee participants

    Design and control methodology of a lower extremity assistive device

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Reliability of the Dynamic Gait Index in Vestibular Disorders

    Get PDF
    The purpose of this study was to examine the inter-rater and intra-rater reliability of the Dynamic Gait Index (DGI) when used with patients with vestibular disorders. Subjects included 30 patients aged 27-88 years, with vestibular disorders, who were referred for vestibular rehabilitation. Subjects\u27 performance on the DGI was concurrently rated by two physical therapists experienced in vestibular rehabilitation to determine inter-rater reliability. To determine intra-rater reliability each subject repeated the DGI one-hour later. Percent agreement and kappa statistics were calculated for individual DGI items. Kappa statistics for individual items were averaged to yield a composite kappa score of the DGI. Total DGI scores were evaluated for inter-rater and intra-rater reliability using Spearman rank order correlation coefficient. Inter-rater reliability of individual DGI items varied from poor to excellent based on kappa values. Composite kappa values demonstrated good overall inter-rater reliability of total DGI scores. Spearman Rho demonstrated excellent correlation between total DGI scores of both raters. Intra-rater reliability of individual items varied from fair to excellent based on kappa values. Composite kappa values demonstrated good overall intra-rater reliability of DGI. Fair but significant correlation was demonstrated between total DGI scores using Spearman Rho. It was concluded that the Dynamic Gait Index demonstrated only fair inter- and intra-rater reliability when used with subjects with vestibular disorders

    Linear inverted pendulum model and swing leg dynamics in biped robot walking trajectory generation

    Get PDF
    Expectations of people and researchers from robotics have changed in the last four decades. Although robots are used to play their roles in the industrial environment, they are anticipated to meet social demands of people in daily life. Therefore, the interest in humanoid robotics has been increasing day by day. Their use for elderly care, human assistance, rescue, hospital attendance and many other purposes is suggested due to their adaptability and human like structure. Biped reference trajectory generation is a challenging task as well as control owing to the instability trend, non-linear robot dynamics and high number of degrees of freedom. Hence, the generated reference trajectories have to be followed with minimum control interference. Linear Inverted Pendulum Model (LIPM) is used to meet this demand which assumes the body as a falling point mass connected to the ground with a massless rod. The Zero Moment Point (ZMP) is a stability criterion for legged robots which provides a more powerful, stable reference generation. With the assistance of this methodology, advanced Linear Inverted Pendulum Models are implemented. This thesis aims to improve the applicability of the versatile and computationally effective LIPM based reference generation approach for the robots with heavy legs. It proposes a swing-leg gravity compensation technique based on a two-mass linear inverted pendulum model which is simulated on a discrete state space model. LIPM modeling is implemented by switching between one-mass and two-mass models during double support and single support phases, respectively. The joint trajectories are then obtained by inverse kinematics and PID controllers are employed independently at joint level for locomotion. The effectiveness of the generated reference trajectories is verified by simulation. The reference generation and control algorithm is tested with a 3-D full dynamic simulator on the model of a 12 DOF biped robot. Results indicate better performance of the one-mass-twomass switching LIPM over the one-mass LIPM

    Human Activity Recognition and Control of Wearable Robots

    Get PDF
    abstract: Wearable robotics has gained huge popularity in recent years due to its wide applications in rehabilitation, military, and industrial fields. The weakness of the skeletal muscles in the aging population and neurological injuries such as stroke and spinal cord injuries seriously limit the abilities of these individuals to perform daily activities. Therefore, there is an increasing attention in the development of wearable robots to assist the elderly and patients with disabilities for motion assistance and rehabilitation. In military and industrial sectors, wearable robots can increase the productivity of workers and soldiers. It is important for the wearable robots to maintain smooth interaction with the user while evolving in complex environments with minimum effort from the user. Therefore, the recognition of the user's activities such as walking or jogging in real time becomes essential to provide appropriate assistance based on the activity. This dissertation proposes two real-time human activity recognition algorithms intelligent fuzzy inference (IFI) algorithm and Amplitude omega (AωA \omega) algorithm to identify the human activities, i.e., stationary and locomotion activities. The IFI algorithm uses knee angle and ground contact forces (GCFs) measurements from four inertial measurement units (IMUs) and a pair of smart shoes. Whereas, the AωA \omega algorithm is based on thigh angle measurements from a single IMU. This dissertation also attempts to address the problem of online tuning of virtual impedance for an assistive robot based on real-time gait and activity measurement data to personalize the assistance for different users. An automatic impedance tuning (AIT) approach is presented for a knee assistive device (KAD) in which the IFI algorithm is used for real-time activity measurements. This dissertation also proposes an adaptive oscillator method known as amplitude omega adaptive oscillator (AωAOA\omega AO) method for HeSA (hip exoskeleton for superior augmentation) to provide bilateral hip assistance during human locomotion activities. The AωA \omega algorithm is integrated into the adaptive oscillator method to make the approach robust for different locomotion activities. Experiments are performed on healthy subjects to validate the efficacy of the human activities recognition algorithms and control strategies proposed in this dissertation. Both the activity recognition algorithms exhibited higher classification accuracy with less update time. The results of AIT demonstrated that the KAD assistive torque was smoother and EMG signal of Vastus Medialis is reduced, compared to constant impedance and finite state machine approaches. The AωAOA\omega AO method showed real-time learning of the locomotion activities signals for three healthy subjects while wearing HeSA. To understand the influence of the assistive devices on the inherent dynamic gait stability of the human, stability analysis is performed. For this, the stability metrics derived from dynamical systems theory are used to evaluate unilateral knee assistance applied to the healthy participants.Dissertation/ThesisDoctoral Dissertation Aerospace Engineering 201
    corecore