10 research outputs found

    Haptics-based Modeling and Simulation of Micro-Implants Surgery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Haptic technology for micro-robotic cell injection training systems — a review

    Full text link
    Currently, the micro-robotic cell injection procedure is performed manually by expert human bio-operators. In order to be proficient at the task, lengthy and expensive dedicated training is required. As such, effective specialized training systems for this procedure can prove highly beneficial. This paper presents a comprehensive review of haptic technology relevant to cell injection training and discusses the feasibility of developing such training systems, providing researchers with an inclusive resource enabling the application of the presented approaches, or extension and advancement of the work. A brief explanation of cell injection and the challenges associated with the procedure are first presented. Important skills, such as accuracy, trajectory, speed and applied force, which need to be mastered by the bio-operator in order to achieve successful injection, are then discussed. Then an overview of various types of haptic feedback, devices and approaches is presented. This is followed by discussion on the approaches to cell modeling. Discussion of the application of haptics to skills training across various fields and haptically-enabled virtual training systems evaluation are then presented. Finally, given the findings of the review, this paper concludes that a haptically-enabled virtual cell injection training system is feasible and recommendations are made to developers of such systems

    Algorithm design & analysis of multi-scale meshing in surgical simulators

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Surface Geometry and the Haptic Rendering of Rigid Point Contacts

    Get PDF
    This thesis examines the haptic rendering of rigid point contacts in virtual simulations. The haptic renderers generate force feedback so that the operator can interact with the virtual scenes in a realistic way. They must be able to recreate the physical phenomena experienced in the real world without displaying any haptic artifacts. The existing renderers are decomposed into a projection function and a regulation scheme. It is shown that the pop-through artifact, whereby the virtual tool instantaneously jumps between two distant surface points, is caused whenever the operator encounters a singularity within the renderer's projection function. This was well known for the minimum distance based renderers, but it is shown here that such singularities arise with the constraint based renderers as well. A new projection function is designed to minimize the existence of singularities within the model. When paired with an appropriate regulation scheme, this forms the proposed mapping renderer. The new projection is calculated by mapping the model onto a canonical shape where the haptic problem is trivial, e.g. a circle in the case of a 2D model of genus zero, which avoids pop-through on smooth models. The haptic problem is then recast as a virtual constraint problem, where the traditional regulation schemes, designed originally for planar surfaces, are shown to introduce a velocity dependent error on curved surfaces that can distort the model's rendering and to couple the regulation towards and dynamics along the constraint. Set stabilization control, based on feedback linearizing the haptic device with respect to a virtual output consisting of coordinates transversal and tangential to the model surface, is proposed as an alternative. It is shown to be able to decouple the system into transversal and tangential subsystems that can then be made asymptotically stable and assigned arbitrary dynamics, respectively

    Virtual reality training for micro-robotic cell injection

    Full text link
    This research was carried out to fill the gap within existing knowledge on the approaches to supplement the training for micro-robotic cell injection procedure by utilising virtual reality and haptic technologies

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    The University of Iowa General Catalog 2009-10

    Get PDF
    corecore