1,002 research outputs found

    Intensional Updates

    Get PDF

    Predicativity, the Russell-Myhill Paradox, and Church's Intensional Logic

    Full text link
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church's intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms of Church's intensional logic that have been criticized by Parsons and Klement: this, it turns out, is due to resources which also permit an interpretation of a fragment of Gallin's intensional logic. Finally, the relation between the predicative response to the Russell-Myhill paradox of propositions and the Russell paradox of sets is discussed, and it is shown that the predicative conception of set induced by this predicative intensional logic allows one to respond to the Wehmeier problem of many non-extensions.Comment: Forthcoming in The Journal of Philosophical Logi

    Computer Science and Metaphysics: A Cross-Fertilization

    Full text link
    Computational philosophy is the use of mechanized computational techniques to unearth philosophical insights that are either difficult or impossible to find using traditional philosophical methods. Computational metaphysics is computational philosophy with a focus on metaphysics. In this paper, we (a) develop results in modal metaphysics whose discovery was computer assisted, and (b) conclude that these results work not only to the obvious benefit of philosophy but also, less obviously, to the benefit of computer science, since the new computational techniques that led to these results may be more broadly applicable within computer science. The paper includes a description of our background methodology and how it evolved, and a discussion of our new results.Comment: 39 pages, 3 figure

    First-Order Stable Model Semantics with Intensional Functions

    Full text link
    In classical logic, nonBoolean fluents, such as the location of an object, can be naturally described by functions. However, this is not the case in answer set programs, where the values of functions are pre-defined, and nonmonotonicity of the semantics is related to minimizing the extents of predicates but has nothing to do with functions. We extend the first-order stable model semantics by Ferraris, Lee, and Lifschitz to allow intensional functions -- functions that are specified by a logic program just like predicates are specified. We show that many known properties of the stable model semantics are naturally extended to this formalism and compare it with other related approaches to incorporating intensional functions. Furthermore, we use this extension as a basis for defining Answer Set Programming Modulo Theories (ASPMT), analogous to the way that Satisfiability Modulo Theories (SMT) is defined, allowing for SMT-like effective first-order reasoning in the context of ASP. Using SMT solving techniques involving functions, ASPMT can be applied to domains containing real numbers and alleviates the grounding problem. We show that other approaches to integrating ASP and CSP/SMT can be related to special cases of ASPMT in which functions are limited to non-intensional ones.Comment: 69 page

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    Models of Type Theory Based on Moore Paths

    Full text link
    This paper introduces a new family of models of intensional Martin-L\"of type theory. We use constructive ordered algebra in toposes. Identity types in the models are given by a notion of Moore path. By considering a particular gros topos, we show that there is such a model that is non-truncated, i.e. contains non-trivial structure at all dimensions. In other words, in this model a type in a nested sequence of identity types can contain more than one element, no matter how great the degree of nesting. Although inspired by existing non-truncated models of type theory based on simplicial and cubical sets, the notion of model presented here is notable for avoiding any form of Kan filling condition in the semantics of types.Comment: This is a revised and expanded version of a paper with the same name that appeared in the proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017
    • …
    corecore