2,193 research outputs found

    Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome.

    Get PDF
    Vertebrate embryos are derived from a transitory pool of pluripotent cells. By the process of embryonic induction, these precursor cells are assigned to specific fates and differentiation programs. Histone post-translational modifications are thought to play a key role in the establishment and maintenance of stable gene expression patterns underlying these processes. While on gene level histone modifications are known to change during differentiation, very little is known about the quantitative fluctuations in bulk histone modifications during development. To investigate this issue we analysed histones isolated from four different developmental stages of Xenopus laevis by mass spectrometry. In toto, we quantified 59 modification states on core histones H3 and H4 from blastula to tadpole stages. During this developmental period, we observed in general an increase in the unmodified states, and a shift from histone modifications associated with transcriptional activity to transcriptionally repressive histone marks. We also compared these naturally occurring patterns with the histone modifications of murine ES cells, detecting large differences in the methylation patterns of histone H3 lysines 27 and 36 between pluripotent ES cells and pluripotent cells from Xenopus blastulae. By combining all detected modification transitions we could cluster their patterns according to their embryonic origin, defining specific histone modification profiles (HMPs) for each developmental stage. To our knowledge, this data set represents the first compendium of covalent histone modifications and their quantitative flux during normogenesis in a vertebrate model organism. The HMPs indicate a stepwise maturation of the embryonic epigenome, which may be causal to the progressing restriction of cellular potency during development

    The role of Histone H3 Lysine 4 trimethylation in zebrafish embryonic development

    Get PDF
    Cells within multicellular organisms share the same genetic information, yet their shape and function can differ dramatically. This diversity of form and function is established by differential use of the genetic information. Early embryonic development describes the processes that lead to a fully differentiated embryo starting from a single fertilized cell - the zygote. Interestingly, in metazoan species this early development is governed by maternally provided factors (nutrients, RNA, protein), while the zygotic genome is transcriptionally inactive. Only at a specific developmental stage, the zygotic genome becomes transcriptionally active, and zygotic transcripts drive further embryonic development. This major change is called zygotic genome activation (ZGA). While major regulators of activation of early zygotic genes could be identified recently, the molecular mechanisms that contribute to robust global genome activation during embryonic development is not fully understood. In this study, I investigated whether the establishment of histone H3 lysine 4 trimethylation (H3K4me3) is involved in zebrafish zygotic transcription activation and early embryonic development. H3K4me3 is a chromatin modification that is implicated in transcription regulation. H3K4me3 has been shown to be enriched at Transcription Start Sites (TSS) of genes prior to their activation, and is postulated facilitate transcription activation of developmentally important genes. To interfere with H3K4me3 establishment, I generated histone methyltransferase mutants. I further inhibited H3K4me3 establishment by introduction of histones with lysine 4-to-methionine (K4-to-M) substitution, which act as dominant-negative inhibitors of H3K4me3 establishment. Upon H3K4me3 reduction, I studied the resulting effect on early transcription activation. I found that H3K4me3 is not involved in transcription activation during early zebrafish embryogenesis. Finally I analyzed possible cues in DNA sequence and chromatin environment that might favor early H3K4me3 establishment. These studies show that H3K4me3 is established during ZGA, yet it is not involved in transcription activation during early zebrafish development. Establishment of H3K4me3 might be a consequence of histone methyltransferase recruitment during a permissive chromatin state, and might be targeted to CpG-rich promoter elements that are enriched for the histone variant H2A.z.:Frontmatter II Acknowledgements VII Thesis Summary (English) IX Thesis Summary (German) X Table of Contents XIV List of Figures XVI List of Tables XVII List of Abbreviations XXIII 1 Introduction 1 1.1 Transcription regulation 2 1.1.1 Promoter elements - genetic information that guides transcription initiation 2 1.1.2 Enhancers - fine-tuning of transcription by distal DNA elements 3 1.1.3 CpG islands - DNA sequences that allow for epigenetic regulation 4 1.2 Chromatin 4 1.2.1 Histone variants 7 1.2.2 Posttranslational histone modifications 7 1.2.3 Histone Lysine methylation 8 1.2.4 H3K4me3 in embryonic development 10 1.3 Establishment and removal of H3K4me3 10 1.3.1 Set1 homologs - Set1a and Set1b 11 1.3.2 Trithorax homologs - Mll1 and Mll2 11 1.3.3 Homologs of Trithorax-related - Mll3 and Mll4 13 1.3.4 COMPASS complex proteins 13 1.3.5 H3K4me3 removal 14 1.4 Transcription activation in embryos 14 1.4.1 Zebrafish early embryonic development 15 1.4.2 H3K4me3 during early zebrafish development 17 1.5 Thesis aim 17 2 Materials and Methods 19 2.1 Materials 19 2.2 Methods 36 2.2.1 Zebrafish husbandry and care 36 2.2.2 Generation of zebrafish knock-out lines by TALEN mutagenesis 36 2.2.3 Generation of plasmids for mRNA production 38 2.2.4 Microinjection 39 2.2.5 Germline transplantation 39 2.2.6 Western Blot Assays 40 2.2.7 RNA extraction and quantification assays 41 2.2.8 Chromatin immunoprecipitation (ChIP) 43 2.3 Bioinformatics Analyses 46 2.3.1 Quality control, alignment and peak calling 46 2.3.2 Lambda normalization 46 2.3.3 Differential ChIP enrichment analysis 47 2.3.4 Data integration 47 2.3.5 Gene classification 48 3 Results I: H3K4me3 interference by Histone methyltransferase mutation 49 3.1 Generation and phenotypic description of histone methyl-transferase mutants 49 3.1.1 HMT TALEN mutagenesis workflow 49 3.1.2 Ash2l TALEN mutation does not result in a larval or adult phenotype 52 3.1.3 Mll2 mutation results in increased larval mortality, while adult fish are healthy and fertile 54 3.1.4 Mll1 mutation results in increased larval mortality and a severe adult phenotype 56 3.2 HMT mutations do not affect global H3K4me3 levels in early zebrafish embryos 60 3.3 Mll1 mutation results in local H3K4me3 reduction of a small subset of genes 62 3.4 Early embryonic transcription is not altered in mll1 maternal-zygotic mutants 67 3.5 Conclusion 70 4 Results II: H3K4me3 interference by introduction of HMT inhibitors 71 4.1 Establishing a Western Blot assay to monitor H3K4me3 reduction 71 4.2 Overexpression of H3K4-specific histone demethylases does not result in global H3K4me3 reduction 73 4.3 Global reduction of H3K4me3 could not be achieved by small-molecule inhibition of HMT activity 75 4.4 Overexpression of K4-specific methylation-defective H3 results in global H3K4me3 reduction 76 4.4.1 Overexpression of H3K4-to-E constructs does not affect global H3K4me3 establishment 76 4.4.2 H3K4-to-M constructs act as dominant-negative substrate for H3K4me3 establishment 77 4.5 H3K4me3 levels at gene promoters are reduced upon introduction of methylation-defective Histone H3 79 4.6 Early transcription activation is not altered upon K4M overexpression 88 4.7 Conclusion 92 5 Results III: Promoters rich in CpG and H2A.z gain H3K4me3 early 93 5.1 H3K4me3 levels increase over developmental time at all gene classes 93 5.2 H3K4me3 is gained at CpG-rich elements 98 5.3 H2A.z marks overlaps with H3K4me3 at promoters of non-transcribed genes 100 5.4 High CpG density and H2A.z enrichment are predictive for H3K4me3 establishment 101 5.5 Maternally provided genes are enriched for H2A.z and CpG content 103 5.6 Conclusion 104 6 Discussion 105 6.1 Neither Mll1 nor Mll2 are the main histone methyltransferase for H3K4me3 establishment in early zebrafish development 106 6.2 H3K4me3 reduction does not affect transcription initiation during genome activation 107 6.3 The timing of H3K4me3 establishment might be determined by a permissive chromatin state 109 6.4 H3K4me3 potentially gains importance during later developmental stages 111 6.5 CpG-content and H2A.z enrichment might be predictive for H3K4me3 establishment during genome activation 112 6.6 Conclusion 115 Appendix 117 Bibliography 139 Authorship Declaration 159Jede Zelle eines multizellulären Organismus enthält dieselbe Erbinformation, und doch können Form und Funktion von Zellen untereinander sehr unterschiedlich sein. Diese Diversität wird durch unterschiedliches Auslesen - Transkribieren - der Erbinformation erreicht. Embryogenese beschreibt den Prozess, der aus einer einzelnen Zelle - der Zygote - einen multizellulären Embryo entstehen lässt. Interessanterweise laufen frühe Stadien der Embryogenese ohne Transkription der embryonalen Erbinformation ab, sondern werden durch maternal bereitgestellte Faktoren ermöglicht. Erst nach einer spezies-spezifischen Entwicklungsphase wird das Erbgut der Zygote aktiv transkribiert und ermöglicht die weitere Embryonalentwicklung. Obwohl bereits wichtige Regulatoren dieser globalen Genomaktivierung identifiziert werden konnten, sind viele molekulare Mechanismen, die zur Aktivierung des zygotischen Genoms beitragen, bisher unbekannt. In der hier vorliegenden Doktorarbeit habe ich die Rolle von Histon H3 Lysin 4 Trimethylierung (H3K4me3) während der frühen Embryogenese des Zebrafischs untersucht. H3K4me3 ist eine Chromatinmodifikation, die mit aktiver Transkription in Verbindung gebracht wird. H3K4me3 ist an Transkriptions-Start-Stellen von aktiv ausgelesenen Genen angereichert und es wird vermutet, dass diese Modifikation das Binden von Transkriptionsfaktoren und der Transkriptionsmaschinerie erleichtert. Während meiner Arbeit habe ich durch Mutation verschiedener Histon-Methyltransferasen beziehungsweise die Überexpression eines dominant-negativen Histonsubstrats versucht, die Etablierung von H3K4me3 in frühen Entwicklungsstadien des Zebrafischs zu verhindern. Anschliessend habe untersucht, welchen Effekt H3K4me3-Reduktion auf Tranksriptionsaktivität entsprechender Gene hat. Allerdings konnte ich keinen Zusammenhang zwischen H3K4me3-Reduktion und Transkriptionsaktivität beobachten. Um herauszufinden, weshalb H3K4me3 dennoch während früher Embryonalstadien etabliert wird, habe ich nachfolgend untersucht, ob möglicherweise bestimmte DNASequenzen oder Chromatin-Modifikationen zur Etablierung von H3K4me3 wahrend der Embryogenese des Zebrafischs beitragen. Aus der hier vorliegenden Arbeit lässt sich schlussfolgern, dass H3K4me3 in Tranksriptionsaktivierung während früher Embryonalstadien des Zebrafischs nicht involviert ist. Möglicherweise wird H3K4me3 in diesen Stadien in einer permissiven Chromatinumgebung etabliert, bevorzugt an Promotoren mit starker H2A.z-Anreicherung und CpG-reichen DNA-Elementen.:Frontmatter II Acknowledgements VII Thesis Summary (English) IX Thesis Summary (German) X Table of Contents XIV List of Figures XVI List of Tables XVII List of Abbreviations XXIII 1 Introduction 1 1.1 Transcription regulation 2 1.1.1 Promoter elements - genetic information that guides transcription initiation 2 1.1.2 Enhancers - fine-tuning of transcription by distal DNA elements 3 1.1.3 CpG islands - DNA sequences that allow for epigenetic regulation 4 1.2 Chromatin 4 1.2.1 Histone variants 7 1.2.2 Posttranslational histone modifications 7 1.2.3 Histone Lysine methylation 8 1.2.4 H3K4me3 in embryonic development 10 1.3 Establishment and removal of H3K4me3 10 1.3.1 Set1 homologs - Set1a and Set1b 11 1.3.2 Trithorax homologs - Mll1 and Mll2 11 1.3.3 Homologs of Trithorax-related - Mll3 and Mll4 13 1.3.4 COMPASS complex proteins 13 1.3.5 H3K4me3 removal 14 1.4 Transcription activation in embryos 14 1.4.1 Zebrafish early embryonic development 15 1.4.2 H3K4me3 during early zebrafish development 17 1.5 Thesis aim 17 2 Materials and Methods 19 2.1 Materials 19 2.2 Methods 36 2.2.1 Zebrafish husbandry and care 36 2.2.2 Generation of zebrafish knock-out lines by TALEN mutagenesis 36 2.2.3 Generation of plasmids for mRNA production 38 2.2.4 Microinjection 39 2.2.5 Germline transplantation 39 2.2.6 Western Blot Assays 40 2.2.7 RNA extraction and quantification assays 41 2.2.8 Chromatin immunoprecipitation (ChIP) 43 2.3 Bioinformatics Analyses 46 2.3.1 Quality control, alignment and peak calling 46 2.3.2 Lambda normalization 46 2.3.3 Differential ChIP enrichment analysis 47 2.3.4 Data integration 47 2.3.5 Gene classification 48 3 Results I: H3K4me3 interference by Histone methyltransferase mutation 49 3.1 Generation and phenotypic description of histone methyl-transferase mutants 49 3.1.1 HMT TALEN mutagenesis workflow 49 3.1.2 Ash2l TALEN mutation does not result in a larval or adult phenotype 52 3.1.3 Mll2 mutation results in increased larval mortality, while adult fish are healthy and fertile 54 3.1.4 Mll1 mutation results in increased larval mortality and a severe adult phenotype 56 3.2 HMT mutations do not affect global H3K4me3 levels in early zebrafish embryos 60 3.3 Mll1 mutation results in local H3K4me3 reduction of a small subset of genes 62 3.4 Early embryonic transcription is not altered in mll1 maternal-zygotic mutants 67 3.5 Conclusion 70 4 Results II: H3K4me3 interference by introduction of HMT inhibitors 71 4.1 Establishing a Western Blot assay to monitor H3K4me3 reduction 71 4.2 Overexpression of H3K4-specific histone demethylases does not result in global H3K4me3 reduction 73 4.3 Global reduction of H3K4me3 could not be achieved by small-molecule inhibition of HMT activity 75 4.4 Overexpression of K4-specific methylation-defective H3 results in global H3K4me3 reduction 76 4.4.1 Overexpression of H3K4-to-E constructs does not affect global H3K4me3 establishment 76 4.4.2 H3K4-to-M constructs act as dominant-negative substrate for H3K4me3 establishment 77 4.5 H3K4me3 levels at gene promoters are reduced upon introduction of methylation-defective Histone H3 79 4.6 Early transcription activation is not altered upon K4M overexpression 88 4.7 Conclusion 92 5 Results III: Promoters rich in CpG and H2A.z gain H3K4me3 early 93 5.1 H3K4me3 levels increase over developmental time at all gene classes 93 5.2 H3K4me3 is gained at CpG-rich elements 98 5.3 H2A.z marks overlaps with H3K4me3 at promoters of non-transcribed genes 100 5.4 High CpG density and H2A.z enrichment are predictive for H3K4me3 establishment 101 5.5 Maternally provided genes are enriched for H2A.z and CpG content 103 5.6 Conclusion 104 6 Discussion 105 6.1 Neither Mll1 nor Mll2 are the main histone methyltransferase for H3K4me3 establishment in early zebrafish development 106 6.2 H3K4me3 reduction does not affect transcription initiation during genome activation 107 6.3 The timing of H3K4me3 establishment might be determined by a permissive chromatin state 109 6.4 H3K4me3 potentially gains importance during later developmental stages 111 6.5 CpG-content and H2A.z enrichment might be predictive for H3K4me3 establishment during genome activation 112 6.6 Conclusion 115 Appendix 117 Bibliography 139 Authorship Declaration 15

    Chromatin accessibility dynamics across C. elegans development and ageing

    Get PDF
    An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, more than 1000 promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements changes during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing

    The miR-430 locus with extreme promoter density forms a transcription body during the minor wave of zygotic genome activation

    Get PDF
    In anamniote embryos, the major wave of zygotic genome activation starts during the mid-blastula transition. However, some genes escape global genome repression, are activated substantially earlier, and contribute to the minor wave of genome activation. The mechanisms underlying the minor wave of genome activation are little understood. We explored the genomic organization and cis -regulatory mechanisms of a transcrip-tion body, in which the minor wave of genome activation is first detected in zebrafish. We identified the miR-430 cluster as having excessive copy number and the highest density of Pol-II-transcribed promoters in the genome, and this is required for forming the transcription body. However, this transcription body is not essential for, nor does it encompasse, minor wave transcription globally. Instead, distinct minor-wave -specific promoter architecture suggests that promoter-autonomous mechanisms regulate the minor wave of genome activation. The minor-wave-specific features also suggest distinct transcription initiation mecha-nisms between the minor and major waves of genome activation

    Chromatin accessibility is dynamically regulated across C. elegans development and ageing

    Get PDF
    An essential step for understanding the transcriptional circuits that control development and physiology is the global identification and characterization of regulatory elements. Here we present the first map of regulatory elements across the development and ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans stage. Based on nuclear transcription profiles, we define 15,714 protein-coding promoters and 19,231 putative enhancers, and find that both types of element can drive orientation-independent transcription. Additionally, hundreds of promoters produce transcripts antisense to protein coding genes, suggesting involvement in a widespread regulatory mechanism. We find that the accessibility of most elements is regulated during development and/or ageing and that patterns of accessibility change are linked to specific developmental or physiological processes. The map and characterization of regulatory elements across C. elegans life provides a platform for understanding how transcription controls development and ageing

    Quantitative methods for profiling dynamic chromatin features

    Get PDF
    Living systems, from entire organisms down to the single cells constituting them are dynamic entities that continuously adapt and respond to their local environment. Cells achieve this through gene expression programs derived from static information encoded in the DNA made dynamic through chemical modifications at the chromatin level, collectively termed the epigenome. Numerous epigenetic regulators have been implicated in early embryonic developmental transitions and pluripotency. Ex vivo, the different states of pluripotency can be recapitulated by embryonic stem cells (ESCs) grown in defined media conditions. Many developmental gene promoters in ESCs display co-occurrence of the activating histone H3 lysine 4 trimethylation (H3K4me3) mark and the repressive H3K27me3 mark. This distinctive bivalent signature is considered to poise expression, allowing timely resolution to an active or inactive state depending on the signal. The distribution of histone modifications and chromatin-associated factors across the genome can be mapped using chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq). However, traditional ChIP-seq methods fail to quantitatively profile the nuanced global and local epigenetic rewiring that takes place in key developmental stages. This thesis addresses this limitation through the development of a quantitative multiplexed ChIP-seq technology: MINUTE (multiplexed indexed unique molecule T7 amplification end to end sequencing) ChIP. Across the three papers included in this thesis, we reveal the underpinnings of chromatin state dynamics in early mouse and human embryonic development by employing MINUTE ChIP. In Paper I, we first show that MINUTE ChIP enables accurate quantitative comparisons over a wide linear range. By employing it to characterize mouse ESCs grown in 2i and serum conditions, we find that the 2i naïve state is characterized by high global levels of H3K27me3 and low H3K4me3. At bivalent promoters, we observe that while H3K27me3 levels are stably maintained between serum and 2i, H3K4me3 levels are higher in the serum condition. Through quantitative epigenome profiling, in Paper II we find that naïve human ESCs also have broad global gain of Polycomb repressive complex 2 (PRC2)-mediated H3K27me3 and define a previously unrecognized, naïve-specific set of bivalent promoters. Bulk and single-cell transcriptomics confirmed that naïve bivalency maintains key trophectoderm and mesoderm transcription factors in a transcriptionally poised state which is resolved to an active state upon depletion of H3K27me3. Therefore, we discovered that PRC2-mediated repression provides a highly adaptive mechanism to restrict lineage potential during early human development. In paper III we show how quantitative RNA polymerase II occupancy profiles generated by MINUTE ChIP can be integrated with transient transcriptomics data to unravel genome wide transcriptional kinetics in three mESCs pluripotent states: naïve, ground and paused. Taken together, this thesis provides compelling evidence for a broad H3K27me3 hypermethylation of the genome in both naïve mouse and human ESCs and the basis for substantially revising the model for bivalency during embryonic developmen

    Chromatin signature of embryonic pluripotency is established during genome activation

    Get PDF
    available in PMC 2011 April 8.After fertilization the embryonic genome is inactive until transcription is initiated during the maternal–zygotic transition. This transition coincides with the formation of pluripotent cells, which in mammals can be used to generate embryonic stem cells. To study the changes in chromatin structure that accompany pluripotency and genome activation, we mapped the genomic locations of histone H3 molecules bearing lysine trimethylation modifications before and after the maternal–zygotic transition in zebrafish. Histone H3 lysine 27 trimethylation (H3K27me3), which is repressive, and H3K4me3, which is activating, were not detected before the transition. After genome activation, more than 80% of genes were marked by H3K4me3, including many inactive developmental regulatory genes that were also marked by H3K27me3. Sequential chromatin immunoprecipitation demonstrated that the same promoter regions had both trimethylation marks. Such bivalent chromatin domains also exist in embryonic stem cells and are thought to poise genes for activation while keeping them repressed. Furthermore, we found many inactive genes that were uniquely marked by H3K4me3. Despite this activating modification, these monovalent genes were neither expressed nor stably bound by RNA polymerase II. Inspection of published data sets revealed similar monovalent domains in embryonic stem cells. Moreover, H3K4me3 marks could form in the absence of both sequence-specific transcriptional activators and stable association of RNA polymerase II, as indicated by the analysis of an inducible transgene. These results indicate that bivalent and monovalent domains might poise embryonic genes for activation and that the chromatin profile associated with pluripotency is established during the maternal–zygotic transition.National Institutes of Health (U.S.) (grant 1R01 HG004069)National Institutes of Health (U.S.) (grant 5R01 GM56211)Human Frontier Science Program (Strasbourg, France) (LT-00090/2007)European Molecular Biology Organization (fellowship

    Doctor of Philosophy

    Get PDF
    dissertationCells of the early vertebrate embryo are distinct in their ability to commit into any cell lineage. How the embryo acquires this remarkable plasticity from two terminally differentiated gametes remains largely unknown. The plasticity in early embryo relies on achieving a unique transcriptome, which is regulated at multiple levels - including chromatin accessibility at developmental enhancers and genes. To understand the global landscape of chromatin accessibility during early embryogenesis, we utilized zebrafish embryos and explored three aspects of chromatin regulation. We first focused on the ATPase subunits (Brg1 and Brm) of SWI/SNF complexes, which are important regulators of chromatin accessibility and gene expression in all eukaryotes. To understand where they act in the genome, we profiled the occupancy of Brg1 and Brm by ChIP-seq at three early embryonic stages around the major onset of zygotic genome activation. We observed the occupancy of Brg1 and Brm during early embryogenesis is highly dynamic. The promoters of key pluripotency factors and other developmental transcription factors are robustly occupied by Brg1 and Brm. Interestingly, Brg1, but not Brm, is highly correlated with active histone modifications. However, only Brm commonly occupies gene bodies, which is dependent on transcription elongation. This work suggests SWI/SNF complexes might play important roles during early embryogenesis, and also reveals distinct roles of Brg1 and Brm in early zebrafish development. We then profiled the global landscape of accessible chromatin by ATAC-seq at three embryonic stages, as well as one differentiated tissue, adult liver. The data suggest chromatin accessibility increases during early embryogenesis. Here, 60% of open chromatin regions reside at genic regions and are highly enriched at promoters. Furthermore, many interesting candidate transcription factors are revealed based on motif analyses. Finally, ATAC-seq fragments with length of 120-220bp, together with MNase-seq date are used to profile nucleosome positioning. Our data determines nucleosome positioning during early embryogenesis, also discovered many interesting sequence characteristics involved in nucleosome positioning at various gene features. In summary, this work has extensively investigated the dynamics of chromatin landscape and the role of chromatin remodelers during early zebrafish development, which allow the comprehensive understanding of the regulation during early embryogenesis
    • …
    corecore