1,067 research outputs found

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Distributed Control of Large Deformable Mirrors

    Get PDF
    While it is attractive to integrate a deformable mirror (DM) for adaptive optics (AO) into the telescope itself rather than using relay optics within an instrument, the resulting large DM can be expensive, particularly for extremely large telescopes. A low-cost approach for building a large DM is to use voice-coil actuators, and rely on feedback from mechanical sensors to improve the dynamic response of the mirror sufficiently so that it can be used in a standard AO control system. The use of inexpensive voice-coil actuators results in many lightly- damped structural resonances within the desired control bandwidth. We present a robust control approach for this problem, and demonstrate performance in a closed-loop AO simulation, incorporating realistic models of low-cost actuators and sensors. The first contribution is to demonstrate that high-bandwidth active damping can be robustly implemented even with non-collocated sensors, by relying on the "acoustic limit" of the structure where the modal bandwidth exceeds the modal spacing. Next we introduce a novel local control approach, which significantly improves the high spatial frequency performance relative to collocated position control, but without the robustness challenges associated with a global control approach. The combination of these "inner" control loops results in DM command response that is demonstrated to be sufficient for integration within an AO system

    Echinodome response to dynamic loading

    Get PDF

    Frequency-based Non-rigid Motion Analysis: Application to Four Dimensional Medical Images

    Get PDF
    International audienceWe present a method for nonrigid motion analysis in time sequences of volume images (4D data). In this method, nonrigid motion of the deforming object contour is dynamically approximated by a physically-based deformable surface. In order to reduce the number of parameters describing the deformation, we make use of a modal analysis which provides a spatial smoothing of the surface. The deformation spectrum, which outlines the main excited modes, can be efficiently used for deformation comparison. Fourier analysis on time signals of the main deformation spectrum components provides a ternporal smoothing of the data. Thus a complex nonrigid deformation is described by only a few parameters: the main excited modes and the main Fourier harmonics. Therefore, 4D data can be analyzed in a very concise manner. The power and robustness of the approach is illustrated by various results on medical data. We believe that our method has important applications in automatic diagnosis of heart diseases and in motion compression

    Robust interactive cutting based on an adaptive octree simulation mesh

    Get PDF
    We present an adaptive octree based approach for interactive cutting of deformable objects. Our technique relies on efficient refine- and node split-operations. These are sufficient to robustly represent cuts in the mechanical simulation mesh. A high-resolution surface embedded into the octree is employed to represent a cut visually. Model modification is performed in the rest state of the object, which is accomplished by back-transformation of the blade geometry. This results in an improved robustness of our approach. Further, an efficient update of the correspondences between simulation elements and surface vertices is proposed. The robustness and efficiency of our approach is underlined in test examples as well as by integrating it into a prototype surgical simulato

    Cognitive-developmental learning for a humanoid robot : a caregiver's gift

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 319-341).(cont.) which are then applied to developmentally acquire new object representations. The humanoid robot therefore sees the world through the caregiver's eyes. Building an artificial humanoid robot's brain, even at an infant's cognitive level, has been a long quest which still lies only in the realm of our imagination. Our efforts towards such a dimly imaginable task are developed according to two alternate and complementary views: cognitive and developmental.The goal of this work is to build a cognitive system for the humanoid robot, Cog, that exploits human caregivers as catalysts to perceive and learn about actions, objects, scenes, people, and the robot itself. This thesis addresses a broad spectrum of machine learning problems across several categorization levels. Actions by embodied agents are used to automatically generate training data for the learning mechanisms, so that the robot develops categorization autonomously. Taking inspiration from the human brain, a framework of algorithms and methodologies was implemented to emulate different cognitive capabilities on the humanoid robot Cog. This framework is effectively applied to a collection of AI, computer vision, and signal processing problems. Cognitive capabilities of the humanoid robot are developmentally created, starting from infant-like abilities for detecting, segmenting, and recognizing percepts over multiple sensing modalities. Human caregivers provide a helping hand for communicating such information to the robot. This is done by actions that create meaningful events (by changing the world in which the robot is situated) thus inducing the "compliant perception" of objects from these human-robot interactions. Self-exploration of the world extends the robot's knowledge concerning object properties. This thesis argues for enculturating humanoid robots using infant development as a metaphor for building a humanoid robot's cognitive abilities. A human caregiver redesigns a humanoid's brain by teaching the humanoid robot as she would teach a child, using children's learning aids such as books, drawing boards, or other cognitive artifacts. Multi-modal object properties are learned using these tools and inserted into several recognition schemes,by Artur Miguel Do Amaral Arsenio.Ph.D
    • …
    corecore