3,622 research outputs found

    Computing With Distributed Information

    Get PDF
    The age of computing with massive data sets is highlighting new computational challenges. Nowadays, a typical server may not be able to store an entire data set, and thus data is often partitioned and stored on multiple servers in a distributed manner. A natural way of computing with such distributed data is to use distributed algorithms: these are algorithms where the participating parties (i.e., the servers holding portions of the data) collaboratively compute a function over the entire data set by sending (preferably small-size) messages to each other, where the computation performed at each participating party only relies on the data possessed by it and the messages received by it. We study distributed algorithms focused on two key themes: convergence time and data summarization. Convergence time measures how quickly a distributed algorithm settles on a globally stable solution, and data summarization is the approach of creating a compact summary of the input data while retaining key information. The latter often leads to more efficient computation and communication. The main focus of this dissertation is on design and analysis of distributed algorithms for important problems in diverse application domains centering on the themes of convergence time and data summarization. Some of the problems we study include convergence time of double oral auction and interdomain routing, summarizing graphs for large-scale matching problems, and summarizing data for query processing

    Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate

    Get PDF
    Tomato peels and seeds (TP) are the most abundant canning industry waste actually used to produce biogas. TP is rich in lycopene (lyc) and represent a more sustainable feedstock than tomato fruits actually employed. It was therefore chosen as feedstock together with supercritical CO2 extraction (SFE-CO2) technology to develop a TP-SFE-CO2 biorefinery, topic scarcely investigated. Two TP were tested and although TP-SFE-CO2 parameters were the same, lyc recoveries depended by peel structure changes occurred during pre -SFE-CO2 drying step. Higher moisture (102.7 g kg-1 wet weight) permitted 97 % lyc recovery and gave a water-in-oil emulsion as extract. Mass balance confirmed that lyc isomerisation did not cause lyc losses. After a significant oil extraction, exhaust TP showed a biodegradability 64% higher than the raw one, attributable to fibre structure disruption. The biorefinery proposed (SFE_CO2+anaerobic digestion) determined positive economic revenue (+787.9 \u20ac t-1 TP) on the contrary of the actual TP management
    • …
    corecore