13,773 research outputs found

    Teichmüller spaces and HR structures for hyperbolic surface dynamics

    Get PDF
    We construct a Teichmüller space for the C^{1+}-conjugacy classes of hyperbolic dynamical systems on surfaces. After introducing the notion of an HR structure which associates an affine structure with each of the stable and unstable laminations, we show that there is a one-to-one correspondence between these HR structures and the C^{1+}-conjugacy classes. As part of the proof we construct a canonical representative dynamical system for each HR structure. This has the smoothest holonomies of any representative of the corresponding C^{1+}-conjugacy class. Finally, we introduce solenoid functions and show that they provide a good Teichmüller space

    Beyond topological persistence: Starting from networks

    Full text link
    Persistent homology enables fast and computable comparison of topological objects. However, it is naturally limited to the analysis of topological spaces. We extend the theory of persistence, by guaranteeing robustness and computability to significant data types as simple graphs and quivers. We focus on categorical persistence functions that allow us to study in full generality strong kinds of connectedness such as clique communities, kk-vertex and kk-edge connectedness directly on simple graphs and monic coherent categories.Comment: arXiv admin note: text overlap with arXiv:1707.0967

    The mixing time of the switch Markov chains: a unified approach

    Get PDF
    Since 1997 a considerable effort has been spent to study the mixing time of switch Markov chains on the realizations of graphic degree sequences of simple graphs. Several results were proved on rapidly mixing Markov chains on unconstrained, bipartite, and directed sequences, using different mechanisms. The aim of this paper is to unify these approaches. We will illustrate the strength of the unified method by showing that on any PP-stable family of unconstrained/bipartite/directed degree sequences the switch Markov chain is rapidly mixing. This is a common generalization of every known result that shows the rapid mixing nature of the switch Markov chain on a region of degree sequences. Two applications of this general result will be presented. One is an almost uniform sampler for power-law degree sequences with exponent γ>1+3\gamma>1+\sqrt{3}. The other one shows that the switch Markov chain on the degree sequence of an Erd\H{o}s-R\'enyi random graph G(n,p)G(n,p) is asymptotically almost surely rapidly mixing if pp is bounded away from 0 and 1 by at least 5lognn1\frac{5\log n}{n-1}.Comment: Clarification

    Part-to-whole Registration of Histology and MRI using Shape Elements

    Get PDF
    Image registration between histology and magnetic resonance imaging (MRI) is a challenging task due to differences in structural content and contrast. Too thick and wide specimens cannot be processed all at once and must be cut into smaller pieces. This dramatically increases the complexity of the problem, since each piece should be individually and manually pre-aligned. To the best of our knowledge, no automatic method can reliably locate such piece of tissue within its respective whole in the MRI slice, and align it without any prior information. We propose here a novel automatic approach to the joint problem of multimodal registration between histology and MRI, when only a fraction of tissue is available from histology. The approach relies on the representation of images using their level lines so as to reach contrast invariance. Shape elements obtained via the extraction of bitangents are encoded in a projective-invariant manner, which permits the identification of common pieces of curves between two images. We evaluated the approach on human brain histology and compared resulting alignments against manually annotated ground truths. Considering the complexity of the brain folding patterns, preliminary results are promising and suggest the use of characteristic and meaningful shape elements for improved robustness and efficiency.Comment: Paper accepted at ICCV Workshop (Bio-Image Computing
    corecore