61 research outputs found

    Singular Perturbations and Time-Scale Methods in Control Theory: Survey 1976-1982

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424U.S. Air Force / AFOSR 78-363

    Applications of Singular Perturbation Techniques to Control Problems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424National Science Foundation / NSF ECS 82-1763

    Analysis and Control of Non-Affine, Non-Standard, Singularly Perturbed Systems

    Get PDF
    This dissertation addresses the control problem for the general class of control non-affine, non-standard singularly perturbed continuous-time systems. The problem of control for nonlinear multiple time scale systems is addressed here for the first time in a systematic manner. Toward this end, this dissertation develops the theory of feedback passivation for non-affine systems. This is done by generalizing the Kalman-Yakubovich-Popov lemma for non-affine systems. This generalization is used to identify conditions under which non-affine systems can be rendered passive. Asymptotic stabilization for non-affine systems is guaranteed by using these conditions along with well-known passivity-based control methods. Unlike previous non-affine control approaches, the constructive static compensation technique derived here does not make any assumptions regarding the control influence on the nonlinear dynamical model. Along with these control laws, this dissertation presents novel hierarchical control design procedures to address the two major difficulties in control of multiple time scale systems: lack of an explicit small parameter that models the time scale separation and the complexity of constructing the slow manifold. These research issues are addressed by using insights from geometric singular perturbation theory and control laws are designed without making any assumptions regarding the construction of the slow manifold. The control schemes synthesized accomplish asymptotic slow state tracking for multiple time scale systems and simultaneous slow and fast state trajectory tracking for two time scale systems. The control laws are independent of the scalar perturbation parameter and an upper bound for it is determined such that closed-loop system stability is guaranteed. Performance of these methods is validated in simulation for several problems from science and engineering including the continuously stirred tank reactor, magnetic levitation, six degrees-of-freedom F-18/A Hornet model, non-minimum phase helicopter and conventional take-off and landing aircraft models. Results show that the proposed technique applies both to standard and non-standard forms of singularly perturbed systems and provides asymptotic tracking irrespective of the reference trajectory. This dissertation also shows that some benchmark non-minimum phase aerospace control problems can be posed as slow state tracking for multiple time scale systems and techniques developed here provide an alternate method for exact output tracking

    Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    Get PDF
    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variables (ii) {\it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {\it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {\it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.Comment: 69 pages, 21 figure

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Robust and Decentralized Control of Web Winding Systems

    Get PDF
    This research addresses the velocity and tension regulation problems in web handling, including those found in the single element of an accumulator and those in the large-scale system settings. A continuous web winding system is a complex large-scale interconnected dynamics system with numerous tension zones to transport the web while processing it. A major challenge in controlling such systems is the unexpected disturbances that propagate through the system and affect both tension and velocity loops along the way. To solve this problem, a unique active disturbance rejection control (ADRC) strategy is proposed. Simulation results show remarkable disturbance rejection capability of the proposed control scheme in coping with large dynamic variations commonly seen in web winding systems. Another complication in web winding system stems from its large-scale and interconnected dynamics which makes control design difficult. This motivates the research in formulating a novel robust decentralized control strategy. The key idea in the proposed approach is that nonlinearities and interactions between adjunct subsystems are regarded as perturbations, to be estimated by an augmented state observer and rejected in the control loop, therefore making the local control design extremely simple. The proposed decentralized control strategy was implemented on a 3-tension-zone web winding processing line. Simulation results show that the proposed control method leads to much better tension and velocity regulation quality than the existing controller common in industry. Finally, this research tackles the challenging problem of stability analysis. Although ADRC has demonstrated the validity and advantage in many applications, the rigorous stability study has not been fully addressed previously. To this end, stability characterization of ADRC is carried out in this work. The closed-loop system is first reformulated, resulting in a form that allows the application of the well established singular perturbation method. Based on the decom

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    The 2nd International Conference on Mathematical Modelling in Applied Sciences, ICMMAS’19, Belgorod, Russia, August 20-24, 2019 : book of abstracts

    Get PDF
    The proposed Scientific Program of the conference is including plenary lectures, contributed oral talks, poster sessions and listeners. Five suggested special sessions / mini-symposium are also considered by the scientific committe
    corecore