1,936 research outputs found

    Generative Adversarial Positive-Unlabelled Learning

    Full text link
    In this work, we consider the task of classifying binary positive-unlabeled (PU) data. The existing discriminative learning based PU models attempt to seek an optimal reweighting strategy for U data, so that a decent decision boundary can be found. However, given limited P data, the conventional PU models tend to suffer from overfitting when adapted to very flexible deep neural networks. In contrast, we are the first to innovate a totally new paradigm to attack the binary PU task, from perspective of generative learning by leveraging the powerful generative adversarial networks (GAN). Our generative positive-unlabeled (GenPU) framework incorporates an array of discriminators and generators that are endowed with different roles in simultaneously producing positive and negative realistic samples. We provide theoretical analysis to justify that, at equilibrium, GenPU is capable of recovering both positive and negative data distributions. Moreover, we show GenPU is generalizable and closely related to the semi-supervised classification. Given rather limited P data, experiments on both synthetic and real-world dataset demonstrate the effectiveness of our proposed framework. With infinite realistic and diverse sample streams generated from GenPU, a very flexible classifier can then be trained using deep neural networks.Comment: 8 page

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table
    corecore