3,884 research outputs found

    Fundamental Limitations of Disturbance Attenuation in the Presence of Side Information

    Get PDF
    In this paper, we study fundamental limitations of disturbance attenuation of feedback systems, under the assumption that the controller has a finite horizon preview of the disturbance. In contrast with prior work, we extend Bode's integral equation for the case where the preview is made available to the controller via a general, finite capacity, communication system. Under asymptotic stationarity assumptions, our results show that the new fundamental limitation differs from Bode's only by a constant, which quantifies the information rate through the communication system. In the absence of asymptotic stationarity, we derive a universal lower bound which uses Shannon's entropy rate as a measure of performance. By means of a case-study, we show that our main bounds may be achieved

    Mean Square Capacity of Power Constrained Fading Channels with Causal Encoders and Decoders

    Full text link
    This paper is concerned with the mean square stabilization problem of discrete-time LTI systems over a power constrained fading channel. Different from existing research works, the channel considered in this paper suffers from both fading and additive noises. We allow any form of causal channel encoders/decoders, unlike linear encoders/decoders commonly studied in the literature. Sufficient conditions and necessary conditions for the mean square stabilizability are given in terms of channel parameters such as transmission power and fading and additive noise statistics in relation to the unstable eigenvalues of the open-loop system matrix. The corresponding mean square capacity of the power constrained fading channel under causal encoders/decoders is given. It is proved that this mean square capacity is smaller than the corresponding Shannon channel capacity. In the end, numerical examples are presented, which demonstrate that the causal encoders/decoders render less restrictive stabilizability conditions than those under linear encoders/decoders studied in the existing works.Comment: Accepted by the 54th IEEE Conference on Decision and Contro

    Minimum Variance Control over a Gaussian Communication Channel

    Get PDF
    We consider the problem of minimizing the response of a plant output to a stochastic disturbance using a control law that relies on the output of a noisy communication channel. We discuss a lower bound on the performance achievable at a specified terminal time using nonlinear timevarying communication and control strategies, and show that this bound may be achieved using strategies that are linear

    Finite-horizon H∞ control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements

    Get PDF
    This technical note deals with the H∞ control problem for a class of discrete time-varying nonlinear systems with both randomly occurring nonlinearities and fading measurements over a finite-horizon. The system measurements are transmitted through fading channels described by a modified stochastic Rice fading model. The purpose of the addressed problem is to design a set of time-varying controllers such that, in the presence of channel fading and randomly occurring nonlinearities, the H∞ performance is guaranteed over a given finite-horizon. The model transformation technique is first employed to simplify the addressed problem, and then the stochastic analysis in combination with the completing squares method are carried out to obtain necessary and sufficient conditions of an auxiliary index which is closely related to the finite-horizon H∞ performance. Moreover, the time-varying controller parameters are characterized via solving coupled backward recursive Riccati difference equations (RDEs). A simulation example is utilized to illustrate the usefulness of the proposed controller design scheme

    Stabilization and Performance over a Gaussian Communication Channel for a Plant with Time Delay

    Get PDF
    Two problems that have received much attention are those of finding the minimum channel signal to noise ratio compatible with closed loop stability, and of finding the optimal performance, in terms of disturbance attenuation, for a channel with specified signal to noise ratio. In this paper, we study these problems for the case in which the plant has relative degree greater than one, and thus introduces a delay greater than one time step. We show that, unlike the relative degree one case, for the problem of stabilization linear time varying control and communication strategies may have advantages over linear time invariant strategies. We derive a lower bound on optimal disturbance response at a fixed terminal time. If the encoder has access to the state of the plant, then this bound is achievable using linear time varying communication and control
    corecore