18,160 research outputs found

    Frustrated two dimensional quantum magnets

    Full text link
    We overview physical effects of exchange frustration and quantum spin fluctuations in (quasi-) two dimensional (2D) quantum magnets (S=1/2S=1/2) with square, rectangular and triangular structure. Our discussion is based on the J1J_1-J2J_2 type frustrated exchange model and its generalizations. These models are closely related and allow to tune between different phases, magnetically ordered as well as more exotic nonmagnetic quantum phases by changing only one or two control parameters. We survey ground state properties like magnetization, saturation fields, ordered moment and structure factor in the full phase diagram as obtained from numerical exact diagonalization computations and analytical linear spin wave theory. We also review finite temperature properties like susceptibility, specific heat and magnetocaloric effect using the finite temperature Lanczos method. This method is powerful to determine the exchange parameters and g-factors from experimental results. We focus mostly on the observable physical frustration effects in magnetic phases where plenty of quasi-2D material examples exist to identify the influence of quantum fluctuations on magnetism.Comment: 78 pages, 54 figure

    Random interactions and spin-glass thermodynamic transition in the hole-doped Haldane system Y2−x_{2-x}Cax_xBaNiO5_5

    Full text link
    Magnetization, DC and AC bulk susceptibility of the SS=1 Haldane chain system doped with electronic holes, Y2−x_{2-x}Cax_xBaNiO5_5 (0≤\leqx≤\leq0.20), have been measured and analyzed. The most striking results are (i) a sub-Curie power law behavior of the linear susceptibility, χ(T)\chi (T)∼\sim TT−α^{-\alpha}, for temperature lower than the Haldane gap of the undoped compound (x=0) (ii) the existence of a spin-glass thermodynamic transition at TTg_g = 2-3 K. These findings are consistent with (i) random couplings within the chains between the spin degrees of freedom induced by hole doping, (ii) the existence of ferromagnetic bonds that induce magnetic frustration when interchain interactions come into play at low temperature.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    The Charge-Transfer Motif in Crystal Engineering. Self-Assembly of Acentric (Diamondoid) Networks from Halide Salts and Carbon Tetrabromide as Electron-Donor/Acceptor Synthons

    Get PDF
    Unusual strength and directionality for the charge-transfer motif (established in solution) are shown to carry over into the solid state by the facile synthesis of a series of robust crystals of the [1:1] donor/acceptor complexes of carbon tetrabromide with the electron-rich halide anions (chloride, bromide, and iodide). X-ray crystallographic analyses identify the consistent formation of diamondoid networks, the dimensionality of which is dictated by the size of the tetraalkylammonium counterion. For the tetraethylammonium bromide/carbon tetrabromide dyad, the three-dimensional (diamondoid) network consists of donor (bromide) and acceptor (CBr4) nodes alternately populated to result in the effective annihilation of centers of symmetry in agreement with the sphaleroid structural subclass. Such inherently acentric networks exhibit intensive nonlinear optical properties in which the second harmonics generation in the extended charge-transfer system is augmented by the effective electronic (HOMO−LUMO) coupling between contiguous CBr4/halide centers

    Stable topological modes in two-dimensional Ginzburg-Landau models with trapping potentials

    Get PDF
    Complex Ginzburg-Landau (CGL) models of laser media (with the cubic-quintic nonlinearity) do not contain an effective diffusion term, which makes all vortex solitons unstable in these models. Recently, it has been demonstrated that the addition of a two-dimensional periodic potential, which may be induced by a transverse grating in the laser cavity, to the CGL equation stabilizes compound (four-peak) vortices, but the most fundamental "crater-shaped" vortices (CSVs), alias vortex rings, which are, essentially, squeezed into a single cell of the potential, have not been found before in a stable form. In this work we report families of stable compact CSVs with vorticity S=1 in the CGL model with the external potential of two different types: an axisymmetric parabolic trap, and the periodic potential. In both cases, we identify stability region for the CSVs and for the fundamental solitons (S=0). Those CSVs which are unstable in the axisymmetric potential break up into robust dipoles. All the vortices with S=2 are unstable, splitting into tripoles. Stability regions for the dipoles and tripoles are identified too. The periodic potential cannot stabilize CSVs with S>=2 either; instead, families of stable compact square-shaped quadrupoles are found

    Charge-Transfer Bonding in Metal–Arene Coordination

    Get PDF
    X-ray crystallographic structures of donor–acceptor complexes of aromatic hydrocarbons with transition metals are re-examined with the focus on the arene ligands. Thus, significant structural and electronic changes are revealed in the arene moiety due to coordination to the metal center including: (i) expansion of the aromatic six-carbon ring; (ii) endocyclic π-bond localization; (iii) distortion of the planarity (folding) of the arene ring; and (iv) shortening of the metal-arene bond distances. All structural features are characteristic of metal–arene (π- or σ-) complexes that exhibit various degrees of (metal-to-ligand) charge transfer. The concept of charge-transfer bonding not only explains the structural details but also the various facets of chemical reactivity of metal-coordinated arenes including efficient carbon-hydrogen bond activation and nucleophilic–electrophilic umpolung, both of which are critical factors in homogeneous metal catalysis

    Contour Dynamics Methods

    Get PDF
    In an early paper on the stability of fluid layers with uniform vorticity Rayleigh (1880) remarks: "... In such cases, the velocity curve is composed of portions of straight lines which meet each other at finite angles. This state of things may be supposed to be slightly disturbed by bending the surfaces of transition, and the determination of the subsequent motion depends upon that of the form of these surfaces. For co retains its constant value throughout each layer unchanged in the absence of friction, and by a well-known theorem the whole motion depends upon [omega]." We can now recognize this as essentially the principal of contour dynamics (CD), where [omega] is the uniform vorticity. The theorem referred to is the Biot-Savart law. Nearly a century later Zabusky et al (1979) presented numerical CD calculations of nonlinear vortex patch evolution. Subsequently, owing to its compact form conferring a deceptive simplicity, CD has become a widely used method for the investigation of two-dimensional rotational flow of an incompressible inviscid fluid. The aim of this article is to survey the development, technical details, and vortex-dynamic applications of the CD method in an effort to assess its impact on our understanding of the mechanics of rotational flow in two dimensions at ultrahigh Reynolds numbers. The study of the dynamics of two- and three-dimensional vortex mechanics by computational methods has been an active research area for more than two decades. Quite apart from many practical applications in the aerodynamics of separated flows, the theoretical and numerical study of vortices in incompressible fluids has been stimulated by the idea that turbulent fluid motion may be viewed as comprising ensembles of more or less coherent laminar vortex structures that interact via relatively simple dynamics and by the appeal of the vorticity equation, which does not contain the fluid pressure. Two-dimensional vortex interactions have been perceived as supposedly relevant to the origins of coherent structures observed experimentally in mixing layers, jets, and wakes, and for models of large-scale atmospheric and oceanic turbulence. Interest has often focused on the limit of infinite Reynolds number, where in the absence of boundaries, the inviscid Euler equations are assumed to properly describe the flow dynamics. The numerous surveys of progress in the study of vorticity and the use of numerical methods applied to vortex mechanics include articles by Saffman & Baker (1979) and Saffman (1981) on inviscid vortex interactions and Aref (1983) on two-dimensional flows. Numerical methods have been surveyed by Chorin (1980), and Leonard (1980, 1985). Caflisch (1988) describes work on the mathematical aspects of the subject. Zabusky (1981), Aref (1983), and Melander et al (1987b) discuss various aspects of CD. The review of Dritschel (1989) gives emphasis to numerical issues in CD and to recent computations with contour surgery. This article is confined to a discussion of vortices on a two-dimensional surface. We generally follow Saffman & Baker (1979) in matters of definition. In two dimensions a vortex sheet is a line of discontinuity in velocity while a vortex jump is a line of discontinuity in vorticity. We shall, however, use filament to denote a two-dimensional ribbon of vorticity surrounded by fluid with vorticity of different magnitude (which may be zero), rather than the more usual three-dimensional idea of a vortex tube. The ambiguity is unfortunate but is already in the literature. Additionally, a vortex patch is a finite, singly connected area of uniform vorticity while a vortex strip is an infinite strip of uniform vorticity with finite thickness, or equivalently, an infinite filament. Contour Dynamics will refer to the numerical solution of initial value problems for piecewise constant vorticity distributions by the Lagrangian method of calculating the evolution of the vorticity jumps. Such flows are often related to corresponding solutions of the Euler equations that are steady in some translating or rotating frame of reference. These solutions will be called vortex equilibria, and the numerical technique for computing their shapes based on CD is often referred to as contour statics. The mathematical foundation for the study of vorticity was laid primarily by the well-known investigations of Helmholtz, Kelvin, J. J. Thomson, Love, and others. In our century, efforts to produce numerical simulations of flows governed by the Euler equations have utilized a variety of Eulerian, Lagrangian, and hybrid methods. Among the former are the class of spectral methods that now comprise the prevailing tool for large-scale two- and three-dimensional calculations (see Hussaini & Zang 1987). The Lagrangian methods for two-dimensional flows have been predominantly vortex tracking techniques based on the Helmholtz vorticity laws. The first initial value calculations were those of Rosenhead (193l) and Westwater (1935) who attempted to calculate vortex sheet evolution by the motion of O(10) point vortices. Subsequent efforts by Moore (1974) (see also Moore 1983, 1985) and others to produce more refined computations for vortex sheets have failed for reasons related to the tendency for initially smooth vortex sheet data to produce singularities (Moore 1979). Discrete vortex methods used to study the nonlinear dynamics of vortex patches and layers have included the evolution of assemblies of point vortices by direct summation (e.g. Acton 1976) and the cloud in cell method (Roberts & Christiansen 1972, Christiansen & Zabusky 1973, Aref & Siggia 1980, 1981). For reviews see Leonard (1980) and Aref (1983). These techniques have often been criticized for their lack of accuracy and numerical convergence and because they may be subject to grid scale dispersion. However, many qualitative vortex phenomena observed in nature and in experiments, such as amalgamation events and others still under active investigation (e.g. filamentation) were first simulated numerically with discrete vortices. The contour dynamics approach is attractive because it appears to allow direct access, at least for small times, to the inviscid dynamics for vorticity distributions smoother than those of either point vortices or vortex sheets, while at the same time enabling the mapping of the two-dimensional Euler equations to a one-dimensional Lagrangian form. In Section 2 we discuss the formulation and numerical implementation of contour dynamics for the Euler equations in two dimensions. Section 3 is concerned with applications to isolated and multiple vortex systems and to vortex layers. An attempt is made to relate this work to calculations of the relevant vortex equilibria and to results obtained with other methods. Axisymmetric contour dynamics and the treatment of the multi-layer model of quasigeostrophic flows are described in Section 4 while Section 5 is devoted to a discussion of the tendency shown by vorticity jumps to undergo the strange and subtle phenomenon of filamentation
    • …
    corecore