874 research outputs found

    Non-Collocation Problems in Dynamics and Control of Mechanical Systems

    Get PDF
    Characteristics of mechanical systems with non-collocated sensors and actuators are investigated. Transfer function zeros location as a function of sensor position, zero-pole interlacing, and re-location of zeros are discussed in a context of presented examples. Some of the presented examples involving non-collocation are supported by experimental data. A case study involving a high speed machining spindle is examined. The control problems associated with non-collocation are studied along with the methods to solve the

    Observers for compressible Navier-Stokes equation

    Full text link
    We consider a multi-dimensional model of a compressible fluid in a bounded domain. We want to estimate the density and velocity of the fluid, based on the observations for only velocity. We build an observer exploiting the symmetries of the fluid dynamics laws. Our main result is that for the linearised system with full observations of the velocity field, we can find an observer which converges to the true state of the system at any desired convergence rate for finitely many but arbitrarily large number of Fourier modes. Our one-dimensional numerical results corroborate the results for the linearised, fully observed system, and also show similar convergence for the full nonlinear system and also for the case when the velocity field is observed only over a subdomain

    Reconstructing initial data using observers: error analysis of the semi-discrete and fully discrete approximations

    Get PDF
    A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani et al. (Automatica 46(10), 1616-1625, 2010 ). Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and an implicit Euler method in time. The analysis is carried out for abstract Schrödinger and wave conservative systems with bounded observation (locally distributed)

    Reconstructing initial data using observers : error analysis of the semi-discrete and fully discrete approximations

    Full text link
    A new iterative algorithm for solving initial data inverse problems from partial observations has been recently proposed in Ramdani, Tucsnak and Weiss [15]. Based on the concept of observers (also called Luenberger observers), this algorithm covers a large class of abstract evolution PDE's. In this paper, we are concerned with the convergence analysis of this algorithm. More precisely, we provide a complete numerical analysis for semi-discrete (in space) and fully discrete approximations derived using finite elements in space and finite differences in time. The analysis is carried out for abstract Schr\"odinger and wave conservative systems with bounded observation (locally distributed).Comment: 38 pages, 1 figure

    Statistical State Dynamics: a new perspective on turbulence in shear flow

    Full text link
    Traditionally, single realizations of the turbulent state have been the object of study in shear flow turbulence. When a statistical quantity was needed it was obtained from a spatial, temporal or ensemble average of sample realizations of the turbulence. However, there are important advantages to studying the dynamics of the statistical state (the SSD) directly. In highly chaotic systems statistical quantities are often the most useful and the advantage of obtaining these statistics directly from a state variable is obvious. Moreover, quantities such as the probability density function (pdf) are often difficult to obtain accurately by sampling state trajectories even if the pdf is stationary. In the event that the pdf is time dependent, solving directly for the pdf as a state variable is the only alternative. However, perhaps the greatest advantage of the SSD approach is conceptual: adopting this perspective reveals directly the essential cooperative mechanisms among the disparate spatial and temporal scales that underly the turbulent state. While these cooperative mechanisms have distinct manifestation in the dynamics of realizations of turbulence both these cooperative mechanisms and the phenomena associated with them are not amenable to analysis directly through study of realizations as they are through the study of the associated SSD. In this review a selection of example problems in the turbulence of planetary and laboratory flows is examined using recently developed SSD analysis methods in order to illustrate the utility of this approach to the study of turbulence in shear flow.Comment: 27 pages, 18 figures. To appear in the book "Zonal jets: Phenomenology, genesis, physics", Cambridge University Press, edited by B. Galperin and P. L. Rea

    Aeronautical engineering: A special bibliography with indexes, supplement 82, April 1977

    Get PDF
    This bibliography lists 311 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1977

    Joint state and parameter estimation for distributed mechanical systems

    Get PDF
    We present a novel strategy to perform estimation for a dynamical mechanical system in standard operating conditions, namely, without ad hoc experimental testing. We adopt a sequential approach, and the joint state-parameter estimation procedure is based on a state estimator inspired from collocated feedback control. This type of state estimator is chosen due to its particular effectiveness and robustness, but the methodology proposed to adequately extend state estimation to joint state-parameter estimation is general, and - indeed -applicable with any other choice of state feedback observer. The convergence of the resulting joint estimator is mathematically established. In addition, we demonstrate its effectiveness with a biomechanical test problem defined to feature the same essential characteristics as a heart model, in which we identify localized contractility and stiffness parameters using measurements of a type that is available in medical imaging
    corecore