526 research outputs found

    Soft Legged Wheel-Based Robot with Terrestrial Locomotion Abilities

    Get PDF
    In recent years robotics has been influenced by a new approach, soft-robotics, bringing the idea that safe interaction with user and more adaptation to the environment can be achieved by exploiting easily deformable materials and flexible components in the structure of robots. In 2016, the soft-robotics community has promoted a new robotics challenge, named RoboSoft Grand Challenge, with the aim of bringing together different opinions on the usefulness and applicability of softness and compliancy in robotics. In this paper we describe the design and implementation of a terrestrial robot based on two soft legged wheels. The tasks predefined by the challenge were set as targets in the robot design, which finally succeeded to accomplish all the tasks. The wheels of the robot can passively climb over stairs and adapt to slippery grounds using two soft legs embedded in their structure. The soft legs, fabricated by integration of soft and rigid materials and mounted on the circumference of a conventional wheel, succeed to enhance its functionality and easily adapt to unknown grounds. The robot has a semi stiff tail that helps in the stabilization and climbing of stairs. An active wheel is embedded at the extremity of the tail in order to increase the robot maneuverability in narrow environments. Moreover two parallelogram linkages let the robot to reconfigure and shrink its size allowing entering inside gates smaller than its initial dimensions

    Fuzzy haptic augmentation for telerobotic stair climbing

    Full text link
    Teleoperated robotic systems provide a valuable solution for the exploration of hazardous environments. The ability to explore dangerous environments from the safety of a remote location represents an important progression towards the preservation of human safety in the inevitable response to such a threat. While the benefits of removing physical human presence are clear, challenges associated with remote operation of a robotic system need to be addressed. Removing direct human presence from the robot\u27s operating environment introduces telepresence as an important consideration in achieving the desired objective. The introduction of the haptic modality represents one approach towards improving operator performance subject to reduced telepresence. When operating in an urban environment, teleoperative stair climbing is not an uncommon scenario. This work investigates the operation of an articulated track mobile robot designed for ascending stairs under teleoperative control. In order to assist the teleoperator in improved navigational capabilities, a fuzzy expert system is utilised to provide the teleoperator with intelligent haptic augmentation with the aim of improving task performance. <br /

    Autonomous stair climbing

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.Includes bibliographical references (p. 71-73).As the face of warfare changes, the military has started to explore the application of robotics on the battlefield. Robots give soldiers a flexible, technologically advanced, disposable set of eyes and ears to assist them with their goal. This thesis deals with the design and implementation of a system to allow a small highly mobile tactical robot to climb stairs autonomously. A subsumption architecture is used to coordinate and control the maneuver. Various approaches to the problem including evolved architectures and use of contraction analysis are explored. Code was written and tested for functionality with basic test software. The functionality of parts of the system and control architecture was tested on the robot in a simulated operational environment.by Kailas Narendran.M.Eng

    Haptic control methodologies for telerobotic stair traversal

    Full text link
    Teleoperated mobile robots provide the ability for a human operator to safely explore and evaluate hazardous environments. This ability represents an important progression towards the preservation of human safety in the inevitable response to situations such as terrorist activities and urban search and rescue. The benefits of removing physical human presence from such environments are obvious, however challenges inhibiting task performance when remotely operating a mobile robotic system need to be addressed. The removal of physical human presence from the target environment introduces telepresence as a vital consideration in achieving the desired objective. Introducing haptic human-robotic interaction represents one approach towards improving operator performance in such a scenario. Teleoperative stair traversal proves to be a challenging task when undertaking threat response in an urban environment. This article investigates the teleoperation of an articulated track mobile robot designed for traversing stairs in a threat response scenario. Utilising a haptic medium for bilateral human-robotic interaction, the haptic cone methodology is introduced with the aim of providing the operator with a vision-independent, intuitive indication of the current commanded robot velocity. The haptic cone methodology operates synergistically with the introduced fuzzy-haptic augmentation for improving teleoperator performance in the stair traversal scenario.<br /

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Autonomous Legged Hill and Stairwell Ascent

    Get PDF
    This paper documents near-autonomous negotiation of synthetic and natural climbing terrain by a rugged legged robot, achieved through sequential composition of appropriate perceptually triggered locomotion primitives. The first, simple composition achieves autonomous uphill climbs in unstructured outdoor terrain while avoiding surrounding obstacles such as trees and bushes. The second, slightly more complex composition achieves autonomous stairwell climbing in a variety of different buildings. In both cases, the intrinsic motor competence of the legged platform requires only small amounts of sensory information to yield near-complete autonomy. Both of these behaviors were developed using X-RHex, a new revision of RHex that is a laboratory on legs, allowing a style of rapid development of sensorimotor tasks with a convenience near to that of conducting experiments on a lab bench. Applications of this work include urban search and rescue as well as reconnaissance operations in which robust yet simple-to-implement autonomy allows a robot access to difficult environments with little burden to a human operator

    A simple upper limb rehabilitation trainer

    Get PDF
    Stroke is a leading cause of disability which can affect shoulder and elbow movements which are necessary for reaching activities in numerous daily routines. To maximize functional recovery of these movements, stroke survivors undergo rehabilitation sessions under the supervision of physiotherapists in healthcare settings. Unfortunately, these sessions may be limited due to staff constraints and are often labor-intensive. There are numerous robotic devices which have been developed to overcome this problem. However, the high cost of these robots is a major concern as it limits their cost-benefit profiles, thus impeding large scale implementation. This paper presents a simple and low cost interactive training module for the purpose of upper limb rehabilitation. The module, which uses a conventional mouse integrated with a small DC motor to generate vibration instead of any robotic actuator, is integrated with a game-like virtual reality system intended for training shoulder and elbow movements. Three games for the module were developed as training platforms, namely: Triangle, Square and Circle games. Results from five healthy study subjects showed that their performances improved with practice and time taken to complete the Triangle game was the fastest of the three
    corecore