34 research outputs found

    Intelligent System Synthesis for Dynamic Locomotion Behavior in Multi-legged Robots

    Get PDF
    Robot technology has been implemented in many fields of our life, such as entertainment, security, rescue, rehabilitation, social life, the military, and etc. Multi-legged robot always exist in many fields, therefore it is important to be developed. Motion capabilities of the robot will be a main focus to be developed. Current development or conventional model of motion capabilities have several issues in saturation of development. There are some limitation in dynamic factors such as, locomotion generator, flexibility of motion planning, and smoothness of movement. Therefore, in this research, natural based computation are implemented as the basic model. There are three subsystems to be developed and integrated, (1) locomotion behavior model, (2) stability behavior model, and (3) motion planning model. Since individual people has different walking behavior in each walking direction and walking speed, locomotion behavior learning model of omni-directional bio-inspired locomotion which is generating different walking behavior in different walking provision are required to be developed. Step length in sagital and coronal direction, and degree of turning are considered parameters in walking provision. In proposed omni-directional walking model, interconnection structures composed by 16 neurons where 1 leg is represented by 4 joints and 1 joint is represented by 2 motor neurons. In order to acquire walking behavior in certain walking provision, the interconnection structure is optimized by multi-objectives evolutionary algorithm. For acquiring the diversity of references, several optimized interconnection structures are generated in optimization processes in different walking provisions. Learning models are proposed for solving non-linearity of relationship between walking input and walking output representing the synaptic weight of interconnection structure, where one learning model representing one walking parameter. Furthermore, by using optimized model, walking behavior can be generated with unsealed walking provision. Smooth walking transition with low error of desired walking provision was proved based on several numerical experiments in physical computer simulation. In stability behavior model, neuro-based push recovery controller is applied in multi-legged robot in order to keep the stability with minimum energy required. There are three motion patterns in individual people behavior when it gets external perturbation, those are ankle behavior, hip behavior, and step behavior. We propose a new model of Modular Recurrent Neural Network (MRNN) for performing online learning system in each motion behavior. MRNN consists of several recurrent neural networks (RNNs) working alternatively depending on the condition. MRNN performs online learning process of each motion behavior controller independently. The aim of push recovery controller is to manage the motion behavior controller by minimizing the energy required for responding to the external perturbation. This controller selects the appropriate motion behavior and adjusts the gain that represent the influence of the motion behavior to certain push disturbance based on behavior graphs which is generated by adaptive regression spline. We applied the proposed controller to the humanoid robot that has small footprint in open dynamics engine. Experimental result shows the effectiveness of the push controller stabilizing the external perturbation with minimum energy required. Proposed motion planning model presents a natural mechanism of the human brain for generating a dynamic path planning in 3-D rough terrain. The proposed model not only emphasizes the inner state process of the neuron but also the development process of the neurons in the brain. There are two information transmission processes in this proposed model, the forward transmission activity for constructing the neuron connections to find the possible way and the synaptic pruning activity with backward neuron transmission for finding the best pathway from current position to target position and reducing inefficient neuron with its synaptic connections. In order to respond and avoid the unpredictable obstacle, dynamic path planning is also considered in this proposed model. An integrated system for applying the proposed model in the actual experiments is also presented. In order to confirm the effectiveness of the proposed model, we applied the integrated system in the pathway of a four-legged robot on rough terrain in computer simulation. For analyzing and proving the flexibility of proposed model, unpredictable collision is also performed in those experiments. The model can find the best pathway and facilitate the safe movement of the robot. When the robot found an unpredictable collision, the path planner dynamically changed the pathway. The proposed path planning model is capable to be applied in further advance implementation. In order to implement the motion capabilities in real cases, all subsystem should be integrated into one interconnected motion capabilities model. We applied small quadruped robot equipped with IMU, touch sensor, and dual ultrasonic sensor for performing motion planning in real terrain from starting point to goal point. Before implemented, topological map is generated by Kinect camera. In this implementation, all subsystem were analyzed and performed well and the robot able to stop in the goal point. These implementation proved the effectiveness of the system integration, the motion planning model is able to generate safe path planning, the locomotion model is able to generate flexible movement depending on the walking provision from motion planning model, and the stability model can stabilize the robot on rough terrain. Generally, the proposed model can be expected to bring a great contribution to the motion capabilities development and can be used as alternative model for acquiring the dynamism and efficient model in the future instead of conventional model usage. In the future, the proposed model can be applied into any legged robot as navigation, supporter, or rescue robot in unstable environmental condition. In addition, we will realize a cognitive locomotion that generates multiple gaits depending on the 3 aspects, embodiment, locomotion generator, and cognition model. A dynamic neuro-locomotion integrated with internal and external sensory information for correlating with the environmental condition will be designed.ロボット技術は、エンターテイメント、セキュリティ、救助、リハビリ、社会生活、軍事などの様々な生活分野に実現さている。多脚ロポットは常に多くの分野に存在するため開発することが重要である。ロボットの運動能力が開発の主要となっている。現状の開発されている動作能力は,飽和状態にある。いくつかの動的な要因により、歩行生成器、動作計画の柔軟性、および動作の滑らかさ等に制限がある。そこで、本研究では、基本的なモデルとして自然計算に基づく方法論を実装する、また、本研究では、歩行動作モデル、安定動作モデル、や運動計画モデルからなる3つのサブシステムを開発し統合する。人間は歩行方向と速度に応じて歩行動作が異なるため、異なる歩行軸では異なる歩行動作を生成するという全方位生物的な運動の歩行動作学習モデルが開発には要求される。球欠および制御方向のステップ長や旋回の度合いは,歩行軸のパラメータとして考慮される。提案した全方位歩行モデルでは,1肢につき16個のニューロンによって構成される相互接続構造を4つの関節によって表現する。また、1つの関節は,2個のモータニューロンによって表現する。一定の歩行軸での歩行動作を獲得するために,本研究では,多目的進化アルゴリズムによって最適化を行う。提案手法では、参照点の多様性を獲得するために,異なる歩行軸においていくつかの最適な相互接続構造が生成される。相互接続構造のシナプス重みを表現している歩行入力と出力間の非線形な関係を解くための学習モデルを構築する。本手法では,1つの学習モデルが1つの歩行パラメータで表現され、最適化されたモデルを用いることにより,歩行動作は,スケーリングされていない歩行軸を生成することが可能となる,物理演算シミュレーションを用いた実験により,誤差の少ない歩行軸の滑らかな歩行遷移を本実験では示している。安定動作モデルでは、必要最小限のエネルギーで安定性を維持するため多足歩行ロボットにニューロベースプッシュリカバリ制御器を適用した。外力をを受けたとき,人間の行動には足首の動作・股関節の動作・踏み動作の3つの動作パターンが存在する。本研究では,各運動動作におけるオンライン学習システムを実現するために、モジュラーリカレントニューラルネットワーク(MRNN)を用いた新たな学習モデルを提案する。MRNNは状況に応じて選択される複数のリカレントニューラルネットワーク(RNN)によって構成される。MRNNは各運動動作コントローラのオンライン学習プロセスを独立して実行する。プッシュリカバリ制御器の目的は、外乱に応じてエネルギー最小化を行うことによって運動動作制御器を管理することである。この制御器は適切な運動動作を選択し,適応回帰スプラインにより生成された動作グラフに基づき押し動作に対して最も影響を及ぼす運動動作のゲインの調整を行う。提案した制御器をOpen Dynamics Engine(ODE)上で小さな足の長さを持つヒューマノイドロボットに適用し,必要最小限のエネルギーで外力に対して安定させるプッシュリカバリ制御器の有効性を示している。3次元の不整地における動的な経路計画を生成するために,人間の自然な脳機能に基づいた動作計画手法を提案する。本モデルは、ニューロンの内部状態過程だけでなく、脳内のニューロンの発達過程も重視している。本モデルは二つのアルゴリズムに構成される。1つは、通過可能な道を見つけるために構築される接続的なニューロン活動である順方向伝達活動であり,もう1つは、現在位置から最適経路を見つけるために、シナプス結合を用いて非効率的なニューロンを減少させる逆方向にニューロン伝達を行うシナプスプルーニング活動である。また,予測不可能な衝突を回避するために,動的な経路計画も実行される。さらに、実環境において提案されたモデルを実現するための統合システムも提示される。提案モデルの有効性を検証するために,コンピュータシミュレーション上で、不整地環境の4足歩行ロボットに関するシミュレーション環境を実装した。これらの実験では,予測不能な衝突に関する実験も行った。本モデルは、最適経路を見つけ出しロボットの安全な移動を実現できた。さらに、ロボットが予測できない衝突を検出した場合,経路計画アルゴリズムが経路を動的に変更可能であることを示している。これらのことから、提案された経路計画モデルはさらなる先進的な展開が実現可能であると考えられる。実環境における運動能力を実装するためには、すべてのサブシステムを1つの運動能力モデルに統合する必要がある。そこで本研究では、IMU、タッチセンサ、2つの超音波センサを搭載した小型の4足歩行ロポットを用いた実環境において出発地点から目的地点までの運動計画を行った、本実装では、3次元距離計測センサであるKinecを用い3次元空間の位相構造を生成する。また、本実装では、すべてのサブシステムが分析され、ロボットは目的地点で停止することができた。さらに、安全な経路計画を生成することができたことからシステム統合の有効性が確認できた。また、歩行モデルにより歩行軸に応じた柔軟な動きが生成されることで、この安定性モデルは不整地環撹でもロボットの歩行を安定させることができた。これらのことから、本提案モデルは運動能力への多大な貢献が期待され、ダイナミクスを獲得するための代替モデルとして使用することができ,現在よく使用されているモデルに代わる効率的なモデルとなることが考えられる。今後の課題としては,不安定な環境下におけるナビゲーション・支援・レスキューロボットといった任意の肢の数を持つ多足歩行ロボットへの本提案モデルの適用があげられる。さらに,身体性,歩行生成,認知モデルの3つの観点から複数の歩容を生成する認知的歩行を実現することを考えている。環境と相互作用するためのモデルとして、内界センサと外界センサ情報を統合した動的ニューロ歩行を実現する予定である。首都大学東京, 2018-03-25, 修士(工学)首都大学東

    Goal-Based Control and Planning in Biped Locomotion Using Computational Intelligence Methods

    Get PDF
    Este trabajo explora la aplicación de campos neuronales, a tareas de control dinámico en el domino de caminata bípeda. En una primera aproximación, se propone una arquitectura de control que usa campos neuronales en 1D. Esta arquitectura de control es evaluada en el problema de estabilidad para el péndulo invertido de carro y barra, usado como modelo simplificado de caminata bípeda. El controlador por campos neuronales, parametrizado tanto manualmente como usando un algoritmo evolutivo (EA), se compara con una arquitectura de control basada en redes neuronales recurrentes (RNN), también parametrizada por por un EA. El controlador por campos neuronales parametrizado por EA se desempeña mejor que el parametrizado manualmente, y es capaz de recuperarse rápidamente de las condiciones iniciales más problemáticas. Luego, se desarrolla una arquitectura extendida de control y planificación usando campos neurales en 2D, y se aplica al problema caminata bípeda simple (SBW). Para ello se usa un conjunto de valores _óptimos para el parámetro de control, encontrado previamente usando algoritmos evolutivos. El controlador óptimo por campos neuronales obtenido se compara con el controlador lineal propuesto por Wisse et al., y a un controlador _optimo tabular que usa los mismos parámetros óptimos. Si bien los controladores propuestos para el problema SBW implementan una estrategia activa de control, se aproximan de manera más cercana a la caminata dinámica pasiva (PDW) que trabajos previos, disminuyendo la acción de control acumulada. / Abstract. This work explores the application of neural fields to dynamical control tasks in the domain of biped walking. In a first approximation, a controller architecture that uses 1D neural fields is proposed. This controller architecture is evaluated using the stability problem for the cart-and-pole inverted pendulum, as a simplified biped walking model. The neural field controller is compared, parameterized both manually and using an evolutionary algorithm (EA), to a controller architecture based on a recurrent neural neuron (RNN), also parametrized by an EA. The non-evolved neural field controller performs better than the RNN controller. Also, the evolved neural field controller performs better than the non-evolved one and is able to recover fast from worst-case initial conditions. Then, an extended control and planning architecture using 2D neural fields is developed and applied to the SBW problem. A set of optimal parameter values, previously found using an EA, is used as parameters for neural field controller. The optimal neural field controller is compared to the linear controller proposed by Wisse et al., and to a table-lookup controller using the same optimal parameters. While being an active control strategy, the controllers proposed here for the SBW problem approach more closely Passive Dynamic Walking (PDW) than previous works, by diminishing the cumulative control action.Maestrí

    Adaptive networks for robotics and the emergence of reward anticipatory circuits

    Get PDF
    Currently the central challenge facing evolutionary robotics is to determine how best to extend the range and complexity of behaviour supported by evolved neural systems. Implicit in the work described in this thesis is the idea that this might best be achieved through devising neural circuits (tractable to evolutionary exploration) that exhibit complementary functional characteristics. We concentrate on two problem domains; locomotion and sequence learning. For locomotion we compare the use of GasNets and other adaptive networks. For sequence learning we introduce a novel connectionist model inspired by the role of dopamine in the basal ganglia (commonly interpreted as a form of reinforcement learning). This connectionist approach relies upon a new neuron model inspired by notions of energy efficient signalling. Two reward adaptive circuit variants were investigated. These were applied respectively to two learning problems; where action sequences are required to take place in a strict order, and secondly, where action sequences are robust to intermediate arbitrary states. We conclude the thesis by proposing a formal model of functional integration, encompassing locomotion and sequence learning, extending ideas proposed by W. Ross Ashby. A general model of the adaptive replicator is presented, incoporating subsystems that are tuned to continuous variation and discrete or conditional events. Comparisons are made with Ross W. Ashby's model of ultrastability and his ideas on adaptive behaviour. This model is intended to support our assertion that, GasNets (and similar networks) and reward adaptive circuits of the type presented here, are intrinsically complementary. In conclusion we present some ideas on how the co-evolution of GasNet and reward adaptive circuits might lead us to significant improvements in the synthesis of agents capable of exhibiting complex adaptive behaviour

    A review of gait optimization based on evolutionary computation

    Get PDF
    Gait generation is very important as it directly affects the quality of locomotion of legged robots. As this is an optimization problem with constraints, it readily lends itself to Evolutionary Computation methods and solutions. This paper reviews the techniques used in evolution-based gait optimization, including why Evolutionary Computation techniques should be used, how fitness functions should be composed, and the selection of genetic operators and control parameters. This paper also addresses further possible improvements in the efficiency and quality of evolutionary gait optimization, some problems that have not yet been resolved and the perspectives for related future research

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion

    Biped locomotion control via hybrid position control and gravity compensation modes /

    Get PDF
    Past three decades witnessed a growing interest in biped walking robots because of their advantageous use in the human environment. However, their control is challenging because of their many degrees of freedom and non-linearities in their dynamics. Various trajectory generation and walking control approaches ranging from open loop walking to systems with many sensors and feedback loops have been reported in the literature. The tuning of the parameters of reference gait is a common complication encountered. Another important problem of the walking control is the contact transients at the instant of landing. The method presented in this thesis generated position references for the upper body. Optimization techniques are employed to obtain suitable leg joint torques for the supporting leg to track body reference trajectories. Locomotion is achieved by a swinging leg control scheme, which is based on position control on certain directions, and artificial gravity compensation on certain directions. Soft landing and low impedance problem of the legs can easily be handled with this scheme. Another advantage is that limited number of parameters is required for gait generation. 3D dynamics and ground interaction simulation techniques are employed for a 12-DOF biped robot to test the proposed method. The simulations indicate the applicability of the method in real implementations

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Opinions and Outlooks on Morphological Computation

    Get PDF
    Morphological Computation is based on the observation that biological systems seem to carry out relevant computations with their morphology (physical body) in order to successfully interact with their environments. This can be observed in a whole range of systems and at many different scales. It has been studied in animals – e.g., while running, the functionality of coping with impact and slight unevenness in the ground is "delivered" by the shape of the legs and the damped elasticity of the muscle-tendon system – and plants, but it has also been observed at the cellular and even at the molecular level – as seen, for example, in spontaneous self-assembly. The concept of morphological computation has served as an inspirational resource to build bio-inspired robots, design novel approaches for support systems in health care, implement computation with natural systems, but also in art and architecture. As a consequence, the field is highly interdisciplinary, which is also nicely reflected in the wide range of authors that are featured in this e-book. We have contributions from robotics, mechanical engineering, health, architecture, biology, philosophy, and others

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    corecore