5 research outputs found

    Inverse kinematics solution for trajectory tracking using artificial neural networks for SCORBOT ER-4u

    Get PDF
    This paper presents the kinematic analysis of the SCORBOT-ER 4u robot arm using a Multi-Layered Feed-Forward (MLFF) Neural Network. The SCORBOT-ER 4u is a 5-DOF vertical articulated educational robot with revolute joints. The Denavit-Hartenberg and Geometrical methods are the forward kinematic algorithms used to generate data and train the neural network. The learning of forward-inverse mapping enables the inverse kinematic solution to be found. The algorithm is tested on hardware (SCORBOT-ER 4u) and reliable results are obtained. The modeling and simulations are done using MATLAB 8.0 software

    Using learning from demonstration to enable automated flight control comparable with experienced human pilots

    Get PDF
    Modern autopilots fall under the domain of Control Theory which utilizes Proportional Integral Derivative (PID) controllers that can provide relatively simple autonomous control of an aircraft such as maintaining a certain trajectory. However, PID controllers cannot cope with uncertainties due to their non-adaptive nature. In addition, modern autopilots of airliners contributed to several air catastrophes due to their robustness issues. Therefore, the aviation industry is seeking solutions that would enhance safety. A potential solution to achieve this is to develop intelligent autopilots that can learn how to pilot aircraft in a manner comparable with experienced human pilots. This work proposes the Intelligent Autopilot System (IAS) which provides a comprehensive level of autonomy and intelligent control to the aviation industry. The IAS learns piloting skills by observing experienced teachers while they provide demonstrations in simulation. A robust Learning from Demonstration approach is proposed which uses human pilots to demonstrate the task to be learned in a flight simulator while training datasets are captured. The datasets are then used by Artificial Neural Networks (ANNs) to generate control models automatically. The control models imitate the skills of the experienced pilots when performing the different piloting tasks while handling flight uncertainties such as severe weather conditions and emergency situations. Experiments show that the IAS performs learned skills and tasks with high accuracy even after being presented with limited examples which are suitable for the proposed approach that relies on many single-hidden-layer ANNs instead of one or few large deep ANNs which produce a black-box that cannot be explained to the aviation regulators. The results demonstrate that the IAS is capable of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks necessary to takeoff, land, and handle emergencies

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Stabilization and control of autonomous hexacopter via visual-servoing and cascaded-proportional and derivative (PD) controllers

    No full text
    In this paper, a new integrated control system via visual-servoing and cascaded proportional derivative (PD) controllers for an autonomous hexacopter is proposed. The spherical image based visual servoing is designed to control the hexacopter to the desired pose with respect to an arbitrary target in three-dimensional (3D) workspace based on images captured. Meanwhile, the cascade-PD controller is designed to stabilize and to control the altitude and heading of the hexacopter. The proposed control strategy is compared with the nested saturation control laws which are adapted to control the horizontal trajectory of the vehicle along X and Y-axes. Simulation results show the ability of the proposed controller in driving the unmanned aerial vehicle (UAV) to the desired pose successfully. The performance of the proposed controllers outperforms the nested saturation controller in tracking a fixed target

    Efficient Real-Time Solutions for Nonlinear Model Predictive Control with Applications

    Get PDF
    Nonlinear Model Predictive Control is an advanced optimisation methodology widely used for developing optimal Feedback Control Systems that use mathematical models of dynamical systems to predict and optimise their future performance. Its popularity comes from its general ability to handle a wide range of challenges present when developing control systems such as input/output constraints, complex nonlinear dynamics multi-variable systems, dynamic systems with significant delays as well as handling of uncertainty, disturbances and fault-tolerance. One of the main and most important challenges is the computational burden associated with the optimisation, particularly when attempting to implement the underlying methods in fast/real-time systems. To tackle this, recent research has been focused on developing efficient real-time solutions or strategies that could be used to overcome this problem. In this case, efficiency may come in various different ways from mathematical simplifications, to fast optimisation solvers, special algorithms and hardware, as well as tailored auto-generated coding tool-kits which help to make an efficient overall implementation of these type of approaches. This thesis addresses this fundamental problem by proposing a wide variety of methods that could serve as alternatives from which the final user can choose from depending on the requirements specific to the application. The proposed approaches focus specifically of developing efficient real-time NMPC methods which have a significantly reduced computational burden whilst preserving desirable properties of standard NMPC such as nominal stability, recursive feasibility guarantees, good performance, as well as adequate numeric conditioning for their use in platforms with reduced numeric precision such as ``floats'' subject to certain conditions being met. One of the specific aims of this work is to obtain faster solutions than the popular ACADO toolkit, in particular when using condensing-based NMPC solutions under the Real-Time Iteration Scheme, considered for all practical purposes the state-of-the-art standard real-time solution to which all the approaches will be bench-marked against. Moreover, part of the work of this thesis uses the concept of ``auto-generation'' for developing similar tool-kits that apply the proposed approaches. To achieve this, the developed tool-kits were supported by the Eigen 3 library which were observed to result in even better computation times than the ACADO toolkit. Finally, although the work undertaking by this thesis does not look into robust control approaches, the developed methods could be used for improving the performance of the underlying ``online'' optimisation, eg. by being able to perform additional iterations of the underlying SQP optimisation, as well as be used in common robust frameworks where multi-model systems must be simultaneously optimised in real-time. Thus, future work will look into merging the proposed methods with other existing strategies to give an even wider range of alternatives to the final user
    corecore