618 research outputs found

    On passivity and passification of stochastic fuzzy systems with delays: The discrete-time case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Takagi–Sugeno (T-S) fuzzy models, which are usually represented by a set of linear submodels, can be used to describe or approximate any complex nonlinear systems by fuzzily blending these subsystems, and so, significant research efforts have been devoted to the analysis of such models. This paper is concerned with the passivity and passification problems of the stochastic discrete-time T-S fuzzy systems with delay. We first propose the definition of passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the stochastic analysis combined with the matrix inequality techniques, a sufficient condition in terms of linear matrix inequalities is presented, ensuring the passivity performance of the T-S fuzzy models. Finally, based on this criterion, state feedback controller is designed, and several criteria are obtained to make the closed-loop system passive in the sense of expectation. The results acquired in this paper are delay dependent in the sense that they depend on not only the lower bound but also the upper bound of the time-varying delay. Numerical examples are also provided to demonstrate the effectiveness and feasibility of our criteria.This work was supported in part by the Royal Society Sino–British Fellowship Trust Award of the U.K., by the National Natural Science Foundation of China under Grant 60804028, by the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers in China under Grant 200802861044, and by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China

    Robust passivity and passification of stochastic fuzzy time-delay systems

    Get PDF
    The official published version can be obtained from the link below.In this paper, the passivity and passification problems are investigated for a class of uncertain stochastic fuzzy systems with time-varying delays. The fuzzy system is based on the Takagi–Sugeno (T–S) model that is often used to represent the complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning. To reflect more realistic dynamical behaviors of the system, both the parameter uncertainties and the stochastic disturbances are considered, where the parameter uncertainties enter into all the system matrices and the stochastic disturbances are given in the form of a Brownian motion. We first propose the definition of robust passivity in the sense of expectation. Then, by utilizing the Lyapunov functional method, the Itô differential rule and the matrix analysis techniques, we establish several sufficient criteria such that, for all admissible parameter uncertainties and stochastic disturbances, the closed-loop stochastic fuzzy time-delay system is robustly passive in the sense of expectation. The derived criteria, which are either delay-independent or delay-dependent, are expressed in terms of linear matrix inequalities (LMIs) that can be easily checked by using the standard numerical software. Illustrative examples are presented to demonstrate the effectiveness and usefulness of the proposed results.This work was supported by the Teaching and Research Fund for Excellent Young Teachers at Southeast University of China, the Specialized Research Fund for the Doctoral Program of Higher Education for New Teachers 200802861044, the National Natural Science Foundation of China under Grant 60804028 and the Royal Society of the United Kingdom

    Distributed state estimation in sensor networks with randomly occurring nonlinearities subject to time delays

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ACM.This article is concerned with a new distributed state estimation problem for a class of dynamical systems in sensor networks. The target plant is described by a set of differential equations disturbed by a Brownian motion and randomly occurring nonlinearities (RONs) subject to time delays. The RONs are investigated here to reflect network-induced randomly occurring regulation of the delayed states on the current ones. Through available measurement output transmitted from the sensors, a distributed state estimator is designed to estimate the states of the target system, where each sensor can communicate with the neighboring sensors according to the given topology by means of a directed graph. The state estimation is carried out in a distributed way and is therefore applicable to online application. By resorting to the Lyapunov functional combined with stochastic analysis techniques, several delay-dependent criteria are established that not only ensure the estimation error to be globally asymptotically stable in the mean square, but also guarantee the existence of the desired estimator gains that can then be explicitly expressed when certain matrix inequalities are solved. A numerical example is given to verify the designed distributed state estimators.This work was supported in part by the National Natural Science Foundation of China under Grants 61028008, 60804028 and 61174136, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Sampled-data control of linear systems subject to input saturation : a hybrid system approach

    Get PDF
    In this work, a new method for the stability analysis and synthesis of sampled-data control systems subject to variable sampling intervals and input saturation is proposed. From a hybrid systems representation, stability conditions based on quadratic clockdependent Lyapunov functions and the generalized sector condition to handle saturation are developed. These conditions are cast in semidefinite and sum-of-squares optimization problems to provide maximized estimates of the region of attraction, to estimate the maximum intersampling interval for which a region of stability is ensured, or to produce a stabilizing controller that results in a large implicit region of attraction, through the maximization of an estimate of it.Neste trabalho é proposto um novo método para a análise da estabilidade de sistemas de controle amostrados aperiodicamente e com saturação na entrada, e também para a síntese de controladores estabilizantes. A partir de uma representação por sistemas híbridos, condições de estabilidade baseadas em funções quadráticas de Lyapunov dependentes do clock e na condição de setor generalizada para o tratamento de saturação são desenvolvidas para o sistema amostrado em questão. Essas condições são incorporadas como restrições em problemas de otimização. Os problemas de otimização são baseados em programação semidefinida e em programação sum-of-squares, e têm o objetivo de obter estimativas maximizadas da região de atração do sistema, estimativas do intervalo de amostragem máximo para o qual uma dada região de estados iniciais seja uma região de estabilidade, ou para produzir controladores (dados por ganhos estáticos estabilizantes) que resultem em uma região de atração implicitamente grande, através da maximização da estimativa dessa região de atração

    Further results on exponential estimates of markovian jump systems with mode-dependent time-varying delays

    Get PDF
    This technical note studies the problem of exponential estimates for Markovian jump systems with mode-dependent interval time-varying delays. A novel LyapunovKrasovskii functional (LKF) is constructed with the idea of delay partitioning, and a less conservative exponential estimate criterion is obtained based on the new LKF. Illustrative examples are provided to show the effectiveness of the proposed results. © 2010 IEEE.published_or_final_versio

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    Stability and stabilization of sampled-data control for lure systems

    Get PDF
    Este trabalho apresenta um novo método para a análise de estabilidade e estabilização de sistemas do tipo Lure com controle amostrado, sujeitos a amostragem aperiódica e não linearidades que são limitadas em setor e restritas em derivada, em ambos contextos global e regional. Assume-se que os estados da planta estão disponíveis para medição e que as não linearidades são conhecidas, o que leva a uma formulação mais geral do problema. Os estados são adquiridos por um controlador digital que atualiza a entrada de controle em instantes de tempo discretos e aperiódicos, mantendo-a constante entre dois instantes sucessivos de amostragem. A abordagem apresentada neste trabalho é baseada no uso de uma nova classe de looped-functionals e em uma função do tipo Lure generalizada, que leva a condições de estabilidade e estabilização que são escritas na forma de desigualdades matriciais lineares (LMIs) e quasi-LMIs, respectivamente. Com base nestas condições, problemas de otimização são formulados com o objetivo de computar o intervalo máximo entre amostragens ou os limites máximos do setor para os quais a estabilidade assintótica da origem do sistema de dados amostrados em malha fechada é garantida. No caso em que as condições de setor são válidas apenas localmente, a solução desses problemas também fornece uma estimativa da região de atração para as trajetórias em tempo contínuo do sistema em malha fechada. Como as condições de síntese são quasi-LMIs, um algoritmo de otimização por enxame de partículas é proposto para lidar com as não linearidades envolvidas nos problemas de otimização, que surgem do produto de algumas variáveis de decisão. Exemplos numéricos são apresentados ao longo do trabalho para destacar as potencialidades do método.This work presents a new method for stability analysis and stabilization of sampleddata controlled Lure systems, subject to aperiodic sampling and nonlinearities that are sector bounded and slope restricted, in both global and regional contexts. We assume that the states of the plant are available for measurement and that the nonlinearities are known, which leads to a more general formulation of the problem. The states are acquired by a digital controller which updates the control input at aperiodic discrete-time instants, keeping it constant between successive sampling instants. The approach here presented is based on the use of a new class of looped-functionals and a generalized Luretype function, which leads to stability and stabilization conditions that are written in the form of Linear Matrix Inequalities (LMIs) and quasi-LMIs, respectively. On this basis, optimization problems are formulated aiming to compute the maximal intersampling interval or the maximal sector bounds for which the asymptotic stability of the origin of the sampled-data closed-loop system is guaranteed. In the case where the sector conditions hold only locally, the solution of these problems also provide an estimate of the region of attraction for the continuous-time trajectories of the closed-loop system. As the synthesis conditions are quasi-LMIs, a Particle Swarm Optimization (PSO) algorithm is proposed to deal with the involved nonlinearities in the optimization problems, which arise from the product of some decision variables. Numerical examples are presented throughout the work to highlight the potentialities of the method
    corecore