84 research outputs found

    Parameterization of Stabilizing Linear Coherent Quantum Controllers

    Full text link
    This paper is concerned with application of the classical Youla-Ku\v{c}era parameterization to finding a set of linear coherent quantum controllers that stabilize a linear quantum plant. The plant and controller are assumed to represent open quantum harmonic oscillators modelled by linear quantum stochastic differential equations. The interconnections between the plant and the controller are assumed to be established through quantum bosonic fields. In this framework, conditions for the stabilization of a given linear quantum plant via linear coherent quantum feedback are addressed using a stable factorization approach. The class of stabilizing quantum controllers is parameterized in the frequency domain. Also, this approach is used in order to formulate coherent quantum weighted H2H_2 and H∞H_\infty control problems for linear quantum systems in the frequency domain. Finally, a projected gradient descent scheme is proposed to solve the coherent quantum weighted H2H_2 control problem.Comment: 11 pages, 4 figures, a version of this paper is to appear in the Proceedings of the 10th Asian Control Conference, Kota Kinabalu, Malaysia, 31 May - 3 June, 201

    On Robustness in the Gap Metric and Coprime Factor Uncertainty for LTV Systems

    Full text link
    In this paper, we study the problem of robust stabilization for linear time-varying (LTV) systems subject to time-varying normalized coprime factor uncertainty. Operator theoretic results which generalize similar results known to hold for linear time-invariant (infinite-dimensional) systems are developed. In particular, we compute an upper bound for the maximal achievable stability margin under TV normalized coprime factor uncertainty in terms of the norm of an operator with a time-varying Hankel structure. We point to a necessary and sufficient condition which guarantees compactness of the TV Hankel operator, and in which case singular values and vectors can be used to compute the time-varying stability margin and TV controller. A connection between robust stabilization for LTV systems and an Operator Corona Theorem is also pointed out.Comment: 20 page

    Normalized coprime factorizations for linear time-varying systems

    Full text link
    In this paper we show that a finite dimensional linear time-varying continuous-time system admits normalized coprime factorizations if and only if it admits a stabilizable and detectable realization. We construct state-space formulas for these factorizations using the stabilizing solutions to standard Riccati differential equations. In the process, we give a simple proof that stabilizability and detectability are sufficient to ensure the existence of such solutions. Based on these results, and on recent advances in the theory of [infinity] optimization, we present an algorithm to compute the distance between two systems in the gap metric.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30015/1/0000383.pd

    A fractional representation approach to the robust regulation problem for MIMO systems

    Get PDF
    The aim of this paper is in developing unifying frequency domain theory for robust regulation of MIMO systems. The main theoretical results achieved are a new formulation of the internal model principle, solvability conditions for the robust regulation problem, and a parametrization of all robustly regulating controllers. The main results are formulated with minimal assumptions and without using coprime factorizations thus guaranteeing applicability with a very general class of systems. In addition to theoretical results, the design of robust controllers is addressed. The results are illustrated by two examples involving a delay and a heat equation.Comment: 23 pages, 3 figures, submitted to International Journal of Robust and Nonlinear Contro

    Optimal Control with Information Pattern Constraints

    Get PDF
    Despite the abundance of available literature that starts with the seminal paper of Wang and Davison almost forty years ago, when dealing with the problem of decentralized control for linear dynamical systems, one faces a surprising lack of general design methods, implementable via computationally tractable algorithms. This is mainly due to the fact that for decentralized control configurations, the classical control theoretical framework falls short in providing a systematic analysis of the stabilization problem, let alone cope with additional optimality criteria. Recently, a significant leap occurred through the theoretical machinery developed in Rotkowitz and Lall, IEEE-TAC, vol. 51, 2006, pp. 274-286 which unifies and consolidates many previous results, pinpoints certain tractable decentralized control structures, and outlines the most general known class of convex problems in decentralized control. The decentralized setting is modeled via the structured sparsity constraints paradigm, which proves to be a simple and effective way to formalize many decentralized configurations where the controller feature a given sparsity pattern. Rotkowitz and Lall propose a computationally tractable algorithm for the design of H2 optimal, decentralized controllers for linear and time invariant systems, provided that the plant is strongly stabilizable. The method is built on the assumption that the sparsity constraints imposed on the controller satisfy a certain condition (named quadratic invariance) with respect to the plant and that some decentralized, strongly stablizable, stabilizing controller is available beforehand. For this class of decentralized feedback configurations modeled via sparsity constraints, so called quadratically invariant, we provided complete solutions to several open problems. Firstly, the strong stabilizability assumption was removed via the so called coordinate free parametrization of all, sparsity constrained controllers. Next we have addressed the unsolved problem of stabilizability/stabilization via sparse controllers, using a particular form of the celebrated Youla parametrization. Finally, a new result related to the optimal disturbance attenuation problem in the presence of stable plant perturbations is presented. This result is also valid for quadratically invariant, decentralized feedback configurations. Each result provides a computational, numerically tractable algorithm which is meaningful in the synthesis of sparsity constrained optimal controllers

    Linear Control Theory with an ℋ∞ Optimality Criterion

    Get PDF
    This expository paper sets out the principal results in ℋ∞ control theory in the context of continuous-time linear systems. The focus is on the mathematical theory rather than computational methods

    The parallel projection operators of a nonlinear feedback system

    Get PDF
    The authors define and study a pair of nonlinear parallel projection operators associated with a nonlinear feedback system. The input-output L_2-stability of a feedback system is shown to be equivalent to a coordinating of the input and output spaces, which is also equivalent to the existence of a pair of nonlinear parallel projection operators onto the graph of the plant and the inverse graph of the controller. These projections have equal norms whenever one of the feedback elements is linear. A bound on this norm is given in the case of passive systems with unity negative feedback
    • …
    corecore